
www.manaraa.com

COGNITIVE ASPECTS OF SOFTWARE ENGINEERING PROCESSES

by

SHAOCHUN XU

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

In partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2006

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

www.manaraa.com

UMI Number: 3210999

3210999
2006

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

© COPYRIGHT BY

SHAOCHUN XU

2006

All Rights Reserved

www.manaraa.com

ii

DEDICATION

To my parents and my family for their support.

www.manaraa.com

iii

ACKNOWLEDGMENTS

This thesis is the result of four and half years of work which I have been

accompanied and supported by many people. I express my gratitude to all of them.

The first person I would like to thank is my supervisor, Prof. Dr. Vaclav

Rajlich. I joined the SEVERE Group (SoftwarE Visualization and Evolution

REsearch Group) at the beginning of 2002. During the years since, I have seen the

sympathetic and principled manner which Vaclav has helped me and others here at

Wayne State. His enthusiasm and his viewpoint on research and his idea for

providing only high-quality work have made a deep impression on me. I give my

gratitude for his having shown me this methodology of research. I trust he

understands how much I have learned from him. I also would like to mention his

encouragement and support in selecting this thesis topic. Since research on

cognitive activity in software engineering processes has been halted for a few years

due to difficulty to find a better approach, he warned me of the dangers of dealing

with such a topic in Ph.D. thesis. Nevertheless, he continually discussed the issues

and the directions with me, and I greatly benefited from his guidance and input. I

thank him for his patience and guidance during my research activities.

I would like to thank Dr. Andrian Marcus for his help and his comments on

my thesis. I would also like to thank these members of my Ph.D. committee who

monitored my work and took time and effort in reading the thesis and for providing

me with valuable comments about it: Dr. Weisong Shi, Dr. Daniel Grosu, and Dr.

Dale Brandenburg.

www.manaraa.com

iv

I also thank all other members of SEVERE group for providing useful

discussions on my emerging ideas: Joe Buchta, Yong Jiang, Andrey Sergeyev,

Denys Poshyvanyk, Travis Xie, Dapeng Liu, Maxym Petrenko. I am also grateful for

Prof. Rajlich and the Department of Computer Science for its financial support while

I was a Teaching Assistant during my study in Wayne State University.

I am grateful for my colleagues in Sault Ste. Marie, Ontario, Canada, Dr. Jay

Rajnovich, Prof. Gerry Davies, and Dr. George Townsend for their help in writing

this thesis.

I had the pleasure to supervise and work with a group of graduate students

and undergraduate students who were joining the experiments. Without their help,

this work could not have been done.

Finally thanks to Ms. Shu Yan, Mr. James Troescher, who spent their

precious time to review my thesis and provided useful suggestions in correcting this

thesis.

www.manaraa.com

v

TABLE OF CONTENTS

Chapter Page

DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES .. ix

LIST OF FIGURES ... xii

CHAPTERS

CHAPTER 1 – Introduction .. 1

1.1 Background ... 1

1.2 Motivation and Hypotheses ... 3

1.3 Contributions ... 5

1.4 Organization of the Dissertation .. 7

CHAPTER 2 – Previous Work.. 11

2.1 Cognitive Research in Software Engineering 11

 2.1.1 Incremental Software Development 14

 2.1.2 Program Debugging ... 17

 2.1.3 Program Comprehension 18

 2.1.4 Novices and Experts... 24

 2.1.5 Summary ... 27

2.2 Cognitive Research Methods .. 29

 2.2.1 Think-Aloud Protocol.. 29

 2.2.2 Recording Methods .. 32

 2.2.3 Coding Schemes ... 35

www.manaraa.com

vi

2.3 Cognitive Theories... 36

2.3.1 Introduction .. 36

2.3.2 Constructivist Learning Theory 39

2.3.3 Bloom’s Taxonomy of the Cognitive Domain 41

CHAPTER 3 – Research Methods... 44

3.1 Case Studies ... 44

3.2 Dialog-Based Protocol... 46

3.2.1 Description of the Dialog-Based Protocol 46

3.2.2 Comparison with the Think-Aloud Protocol.......... 48

3.3 Recording Methods ... 50

3.3.1 Videotaping.. 50

3.3.2 Software Screen Capturing.................................. 51

CHAPTER 4 – Self-Directed Learning Theory 53

4.1 Description of the Self-Directed Learning Theory.............. 54

4.2 Comparison with Other Models ... 57

CHAPTER 5 – Case Study on Incremental Software Development .. 60

5.1 Introduction.. 60

5.2 Case Study Design.. 61

5.2.1 Participants .. 62

5.2.2 Material .. 63

5.2.3 Procedures .. 65

5.3 Case Study Result... 67

5.4 Threats to the Case Study... 76

www.manaraa.com

vii

5.5 Summary of the Case Study.. 76

CHAPTER 6 – Case Study on Program Debugging........................... 79

6.1 Introduction.. 79

6.2 Case Study Design.. 81

6.3 Case Study Result... 84

6.4 Threats to the Case Study... 88

6.5 Summary of the Case Study.. 88

CHAPTER 7 – Case Study on Software Evolution............................. 90

7.1 Introduction.. 90

7.2 Case Study Design.. 95

7.2.1 Participants .. 97

7.2.2 Material .. 98

7.2.3 Procedures .. 99

7.3 Case Study Result... 100

7.4 Threats to the Case Study... 107

7.5 Summary of the Case Study.. 107

CHAPTER 8 - Evaluation of Dialog-Based Protocol, Software Screen

Capturing and Self-Directed Learning Theory.................................. 110

8.1 Dialog-Based Protocol... 110

8.2 Software Screen Capturing ... 112

8.3 Self-Directed Learning Theory... 113

CHAPTER 9 – Conclusions and Future Work.................................. 115

9.1 Dialog-Based Protocol... 115

www.manaraa.com

viii

9.2 Self-Directed Learning Theory... 115

9.3 Cognitive Process during Incremental Software Development

.. 166

9.4 Cognitive Process during Program Debugging................ 117

9.5 Pair Programming in Software Evolution Course Projects118

9.6 Potential Future Work.. 119

APPENDICIES

Appendix A – Pilot Study on Incremental Software Development.... 121

Appendix B – Case Study on Incremental Software Development .. 138

Appendix C –Case Study on Program Debugging 152

BIBLIOGRAPHY ... 154

ABSTRACT... 178

AUTOBIOGRAPHICAL STATEMENT .. 180

www.manaraa.com

ix

LIST OF TABLES

TABLE PAGE

Table 2.1 The comparison between videotaping and voice-recording.......... 34

Table 2.2 The cognitive domain taxonomy and illustrative examples 44

Table 3.1 Anticipated comparisons between Think-Aloud Protocol and Dialog-

Based Protocol ... 49

Table 4.1 The four cognitive activities and corresponding verbs 54

Table 4.2 The self-directed learning model :all four cognitive activities may

take place at any of the Bloom levels ... 56

Table 5.1 Programmers’ background and the date of experiment 62

Table 5.2 Main characteristics of the programs and the dialogs in the case

study ... 68

Table 5.3 The distribution of the cognitive activities and Bloom levels

throughout the recorded episodes for Martin and Koss 69

Table 5.4 The distribution of the cognitive activities and Bloom levels

throughout the recorded episodes for the eight intermediate

programmers pairs.. 70

Table 5.5 The distribution of the cognitive activities for individual pairs 71

Table 5.6 The distribution of the Bloom levels throughout for individual pairs72

Table 6.1 The distribution of the cognitive activities and Bloom levels in the

case study... 86

Table 6.2 Examples at each cognitive level in the case study 87

Table 7.1 Programmers’ experience... 97

www.manaraa.com

x

Table 7.2 Comparison of time (hours) used by pair and individual

programmers .. 101

Table 7.3 Change request results for pairs... 102

Table 7.4 Change request results for individuals .. 102

Table 7.5 Results of quantitative questions from the survey for pairs......... 103

Table 7.6 Answers of qualitative questions from the survey for pairs 105

Table 7.7 Answers of qualitative questions from the survey for individuals 106

Table A.1 Analogy of incremental software development and constructivism

.. 102

Table A.2 The detailed classification of the cognitive activities and Bloom

levels for each episode in the case study on incremental software

development ... 130

Table B.1 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair I.................................. 137

Table B.2 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair II................................. 139

Table B.3 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair III................................ 140

Table B.4 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair IV 141

Table B.5 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair V 143

www.manaraa.com

xi

Table B.6 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair VI 145

Table B.7 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair VII 147

Table B.8 The distribution of the cognitive activities and Bloom levels

throughout the recorded episode for pair VIII 149

Table C.1 The classification of the cognitive activities and Bloom levels in the

case study on program debugging.. 151

www.manaraa.com

xii

LIST OF FIGURES

FIGURE PAGE

Figure 1.1 Roadmap to the thesis… ... 9

Figure 3.1 Steps of dialog-based protocol .. 46

Figure 4.1 Comprehension strategies and their relationship with Bloom

levels ... 59

Figure 5.1 An example of scoring bowling games .. 65

Figure 5.2 The number of concepts in the knowledge of each pair during

incremental software development ... 67

Figure 6.1 A debugging process model .. 80

Figure A.1 Domain concepts in the pilot study.. 123

Figure A.2 UML class diagram for the first version….................................. 124

Figure A.3 Design decisions for the first version… 124

Figure A.4 Design decisions in the middle of development…..................... 125

Figure A.5 Design decisions after class Frame was abandoned…............. 126

Figure A.6 UML class diagram for the final program…............................... 127

Figure A.7 Design decisions at the end of development… 128

Figure B.1 UML class diagram for the pair I’s program … 138

Figure B.2 UML class diagram for the pair II’s program … 139

Figure B.3 UML class diagram for the pair III’s program … 140

Figure B.4 UML class diagram for the pair IV’s program …........................ 142

Figure B.5 UML class diagram for the pair V’s program …......................... 144

Figure B.6 UML class diagram for the pair VI’s program …........................ 186

www.manaraa.com

xiii

Figure B.7 UML class diagram for the pair VII’s program …....................... 148

Figure B.8 UML class diagram for the pair VIII’s program …...................... 150

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

1.1 Background

Software is a human-intensive technology and the studies of cognitive

processes in software engineering can shed light on many software engineering

problems [125] [39]. Software engineering deals with distinct processes, such as

requirements analysis, software design, software evolution, program debugging,

software reuse, software maintenance and program documentation. A common

characteristic of all these processes is in the method employed in handling a large

amount of knowledge that is distributed over many knowledge domains, such as the

problem domain, program domain, and programming techniques domain [31]. The

program itself is also a large repository of this knowledge and may contain

knowledge that is not available elsewhere, as documented in [86]. It also contains

knowledge of all design decisions that were made during the program development

and the consequent program evolution [129].

When either evolving or maintaining the program, it is necessary to recover

that knowledge; otherwise maintenance or evolution will be impossible. It is also

necessary to communicate the knowledge to all new programmers who are

engaged in software project. Although the knowledge is embedded in the program,

it cannot be easily recovered since the bits of knowledge are delocalized into

different parts of the program. Moreover, the consequences of the decisions, rather

www.manaraa.com

2

than the decisions themselves, appear in the code. In many ways, the recovery of

knowledge from the code is similar to that of solving a puzzle, in that it is laborious

and error prone. Some knowledge might not be able to be recovered. Loss of

programming knowledge was identified as a leading cause of code decay [28].

Forward engineering is used to process the domain knowledge and turn it

into design decisions that will be reflected in the source code (i.e. encode the

knowledge into the code), whereas program understanding and reverse engineering

are used to decode this knowledge from legacy systems and their documents. An

example of forward engineering is the process of software development. Therefore,

the cognitive process is the center of all software engineering processes to such

extent that understanding the cognitive process and documenting the knowledge

during software engineering processes becomes a critical and practical issue.

Empirical studies have been applied in software engineering research [9].

Some of these issues are of great importance, including how to conduct the

experiments, how to capture the data, and how to analyze the data [83]. Without an

effective way to collect and capture the data, the data collected might be incomplete

or incorrect. Conversely, an accurate coding scheme is critical to analyze the data

and to explain the experiment result.

The empirical approaches, which have been commonly used by cognitive

scientists, include protocol analysis, task analysis, and discourse analysis [51, 58,

133].

Think-aloud protocol analysis, one of protocol analysis techniques, uses a

single subject who verbalizes his/her thoughts while performing a task. Think-aloud

www.manaraa.com

3

protocol analysis has been used in social sciences for many years and is now

increasingly common in software engineering research [158]. However, there are

some deficiencies in this approach. These include the placebo effect [127] and the

Hawthorne effect [1]. For that reason, the researchers have to search for additional

empirical methods that may offer relief from these two problems.

There are many cognitive theories which have been applied and used in

studying cognitive process in software engineering, including text understanding [4],

knowledge modeling, problem-solving and learning. Particularly in the area of

program comprehension, many theories have been proposed. Examples of these

include the top-down, and bottom-up theories [24]. However, previous theories and

models might not be able to explain the important aspects of software engineering

process, and quite a lot cannot be used to explain well the differences between

expert and novice programmers. Therefore, a new model should be developed to

meet such a need.

There is some research on how experts perform programming tasks (such as

program comprehension, program debugging etc) that differ from novices. However,

none of this research was performed from the point view of actual cognitive

activities.

1.2 Motivation and Hypotheses

In order to better understand the cognitive aspects of software engineering

and the nature of program knowledge, several approaches should be taken: 1) we

www.manaraa.com

4

study in detail the most common protocol research method: think-aloud protocol, to

see the advantages and disadvantages, and to see if we can improve that method

in order to collect more complete and accurate empirical data; 2) we study the

existing recording methods such as tape recording and videotaping, to find a better

way to document the programming process; 3) we study the existing cognitive

theories in order to build a more reasonable and useful model to explain the

cognitive process in software engineering 4) then we use our new approach

(including new protocol, new recording method, and new code scheme) to conduct

a pilot study and further case studies on selected software engineering processes

(incremental software development, program debugging, software evolution), in

order to understand the cognitive process and to evaluate our new approach.

The type hypotheses for this research are:

1. “There are better ways than think-aloud protocol to study the cognitive activities

in software engineering”

2. “The combination of several learning theories can be used to better study the

cognitive activities used during software engineering process”

3. “Intermediate programmers follow a similar cognitive process during incremental

software development”

4. “Experts and intermediate programmers follow different cognitive processes

when they perform incremental software development”

5. “The method we use for incremental software development can be also applied

in studying software evolution and program debugging”

www.manaraa.com

5

1.3 Contributions

We studied the think-loud protocol and discovered several defects. Based on

the idea of pair programming [10], we proposed a dialog-based protocol for

cognitive research in software engineering, since the majority of software

engineering tasks can be done with pairs. In pair programming, where two

programmers work on a programming problem using only one computer, the

technique requires a constant dialog between them. This dialog can be

unobtrusively recorded to provide evidence for programmer cognitive process. The

dialog-based protocol can greatly reduce the negative effects of the think-aloud

protocol.

We also discovered a new recording method in which screen-capturing

software with voice recording can provide more complete and higher quality data.

Software screen-capturing records the programming process and communication

between the two programmers.

We extended the constructivist learning theory and refined the cognitive

process into four cognitive activities: absorption, reorganization, denial and

expulsion. By combining the extended constructivist learning theory and Bloom’s

taxonomy of cognitive domain, we proposed a new cognitive model called self-

directed learning. The extended constructivist learning classifies the cognitive

activities and the Bloom taxonomy assesses their complexity with six levels

(knowledge, comprehension, application, analysis, synthesis, evaluation). The self-

directed learning theory provides an encoding scheme used to analyze the

www.manaraa.com

6

empirical data. This model forms a basis for study of the cognitive process involved

in various software engineering processes.

With the unified cognitive model, we can study the distribution of the four

cognitive activities and six Bloom levels in order to distinguish various software

engineering processes. We can also use this model to understand the cognitive part

of these processes and to improve software engineering practice through this better

understanding. It can also be used to study the cognitive differences and gaps

between novice and expert programmers during their various software engineering

activities.

We used our new empirical approach, including the dialog-based protocol,

software screen-capturing, and the self-directed learning theory, to study cognitive

activities by conducting experiments on 10 intermediate level pairs. We gave

particular attention to the differences between theirs’ and the experts’ learning.

Compared to intermediate programmers before starting to write their code, experts

discussed more domain concepts and were more willing to reconsider and correct

obsolete design decisions. Experts mostly concentrated on one concept at one

time, while intermediate programmers often discussed several concepts

simultaneously. We also found that the cognitive process applied by experts is

different from that of intermediate programmers.

We used this approach to study program debugging. We confirmed that the

self-directed learning model can also be used to study the cognitive process during

program debugging.

www.manaraa.com

7

We studied pair programming used in software evolution in graduate

software engineering project. We applied the pair programming in software

evolution project by asking students to make incremental changes in an open

project. We found that paired programmers completed the change request task with

higher quality and shorter time compared to programmers who worked individually.

We think that our empirical study can also provide some knowledge for tool

development, i.e. it could lead towards a new generation of documentation systems

that could be better used to capture the program knowledge during software

development and maintenance, and in turn improve program understanding and

reduce maintenance costs. This approach can also provide some guidance for

education and training purposes.

This study will also shed some light on the different philosophical

understandings (learning view) of software engineering processes, which in turn

improve the efficiency of software development, program debugging and program

comprehension, and the quality of software produced.

1.4 Organization of the Dissertation

This dissertation consists of nine chapters. Figure 1.1 represents the

roadmap to the dissertation. The rectangles represent the chapters of the thesis;

the arrows represent the relation between the chapters.

Chapter 2 reviews the related work. It provides a summary of previous work

in cognitive research in incremental software development, program debugging and

www.manaraa.com

8

program comprehension. We also reviewed cognitive research methods, such as

think-aloud protocol, recording methods and code schemes. The review on related

cognitive theories, particularly the constructivist learning and Bloom’s taxonomy of

cognitive domain is also included in this chapter.

Chapter 3 describes the methods used for our research. A novel empirical

research method: dialog-based protocol is given in detail. We also make a detailed

comparison with think-aloud protocol. In chapter 3, we also explain the recording

methods which are used for our experiment, including videotaping and software

screen–capturing.

Chapter 4 outlines the self-directed learning model, a new code scheme,

based on extended constructivist learning theory and Bloom’s taxonomy. A

comparison with some existing models is also discussed.

Chapter 5 covers the detailed case study on incremental software

development, where we apply our novel empirical approach. We describe the

detailed case study design and case study result.

Chapter 6 describes the case study on program debugging, in which we

study the cognitive process using the self-directed learning theory.

www.manaraa.com

9

Chapter 3
Research
Methods

Chapter 4
Self-Directed
Learning

Chapter 2
Previous Work

Chapter 5
Case Study on
Incremental Software
Development

Chapter 6
Case Study on
Program
Debugging

Chapter 7
Case Study on
Software
Evolution

Chapter 8
Evaluation of the
Approach

Chapter 9
Conclusions and
Future Work

Figure 1.1: Roadmap to the thesis

www.manaraa.com

10

Chapter 7 covers the case study on software evolution, in which we conduct

experiments with pair programming and solo programming, and then compare the

experimental results. We also discuss the survey result on pair programming in this

chapter.

Chapter 8 surveys the strengths and weaknesses of our empirical method,

including the dialog-based protocol, software screen-capturing and self-directed

learning theory.

Chapter 9 concludes the thesis. It summarizes our research results and

provides some potential future work.

Three appendixes are attached in the thesis. One is for the pilot study on

incremental software development; one for all the detailed data for the case study

on incremental software development; one for the case study on program

debugging.

www.manaraa.com

11

CHAPTER 2

PREVIOUS WORK

2.1 Cognitive Research in Software Engineering

The process of cognitive study of programming began during the 1970s. At

that time, computer scientists were interested in testing or evaluating new

programming tools by using methods from experimental psychology. One example

is when Shneiderman (1976, 1980) [134, 136] proposed two independent variables

to measure the performance when modifying a program. One was the use of

meaningful mnemonic variable names and the other was the use of comments. His

experimental result showed that the more complex the program, the more the use

of mnemonic variable names helped in understanding it and the more functionally

descriptive comments use, the faster the conversion of code to internal semantic

structure [134, 136] [135].

The objective of the cognitive research approach during that period was to

enrich the theoretical frameworks by borrowing theories from cognitive psychology

and other disciplines [23]. Many theoretical frameworks were proposed during the

time period between 1970s and 1980s. These can be classified into four categories.

 Understanding of natural language text: A few theories were proposed to

explain the understanding of programs. For example to understand programs,

Atwood and Ramsey applied the theory of Kintsch and van Dijk (1978) [4] and

found that understanding a program is similar to understanding a text that includes

www.manaraa.com

12

recognizing letters and words, syntactic parsing of sentences, understanding the

meaning of words and sentences, and incorporating the meaning of the text in other

present knowledge.

 Learning: Cognitive and educational models were borrowed to explain the

learning of programs. Mayer (1981) [95] used the learning theory to explain how a

novice learns computer programming. He stated that two things happen as novices

learn to program. First, beginning programmers acquire new information about the

programming language and the rules that govern it. Secondly, they create a mental

model of what happens inside the computer as the program statements get

executed.

 Modeling of knowledge: The schema theory was used to study how the

experts organize their knowledge during program comprehension [141]. McKeithen

et al. (1981) [97] applied the theory of information processing on knowledge

organization in complex domains such as chess to the programming domain.

 Problem solving: Brooks (1977) [22] used the Newell and Simon (1972)’s

theory of information processing [103] to study the cognitive mechanism in program

design. He described the programming process as one of constructing mappings

from a problem domain to an implementation domain, possibly through multiple

levels. The work of Newell and Simon has long dominated the theories on problem

solving in cognitive science.

During the first workshop on Empirical Studies of Programmers in 1986, one

paper presented by Curtis [40] and one paper presented by Soloway [140] played a

great role to lead to continued research on theoretic direction. Since that time,

www.manaraa.com

13

several cognitive models on program comprehension and on other processes have

been proposed. Included are the top-down model, bottom-up model and as-needed

model [90] [24]. Detailed research history will be described below. The theories from

other disciplines have recently also been applied in explanation of software

engineering processes. For example, Rajlich (2002) [115] and Exton (2002) [52]

applied constructivist-learning theory in program comprehension. Wang (2002) [164]

created the term, Cognitive informatics (CI), which is a multidisciplinary research area

at the intersection of cognitive science, neural psychology, philosophy, software

engineering, and other disciplines. Wang (2004) [165] also investigated the

relationship between software engineering and cognitive informatics and developed a

set of laws and cognitive properties for software engineering.

In addition to the cognitive models proposed during this period, there was

much work completed in studying the activity of novices and experts in conjunction

with the participation of some professionals in experimental studies or field

studies[154] [47]. These recognized the various differences between novices and

experts during software development that included knowledge, strategies they use

etc. The differences between novices and experts during debugging and program

comprehension were also investigated [72, 153].

Since our work mainly concentrates on selected software engineering

processes (incremental software development, program debugging, and software

evolution), we summarize the research on cognitive activity and tools according to

individual software engineering processes as follows.

www.manaraa.com

14

2.1.1 Incremental Software Development

The classic software development process suggests a systematic sequential

approach to software development that begins at the requirements specification

level and progresses through analysis, design, coding, testing and maintenance.

Although the incremental development process is been widely used, its history can

be traced back to 1950s, when it was derived from several projects [87]. The

incremental software development process has no sharp distinction between the

requirements specification and design in the so-called elaboration phase, and with

iterations during the construction phase. Incremental software development and

subsequent program evolution is a process where the programmers add one

program property at a time. Programmers often start with an existing program or a

program framework covering a fundamental functionality, and add and delete

properties to or from it.

Although Curtis (1988) [41] indicated that development of large software

systems is composed of the activities of learning, communication and negotiation,

not enough research has been done on the knowledge and cognitive process during

incremental software development. A systematical analysis on the programming

strategy was conducted by Davies (1993) [45], who suggested that what is needed

is an explanation of programming skill that integrates ideas about knowledge

representation with a strategic model, enabling one to make predictions about how

changes in knowledge representation might give rise to particular strategies and to

the strategy changes associated with developing expertise. Fisher et al. (1994) [53]

www.manaraa.com

15

proposed a support for the incremental development based on a specific knowledge

model, where seeding, evolution and reseeding are the three stages of knowledge

capturing and transformation. Henninger (1997) [74] recognized that software

development is a process involving various knowledge resources that continually

change during the process. Ribbins (1999) [74] used several cognition theories,

including Reflection-In-Action, to understand the design process and Wallenstein

(2002) [162] proposed one framework for tool design based on distributed cognition

theory. Ostward (1996) [109] discussed the social and evolutionary process

involved in the knowledge construction during the software development process.

Baragry (2000) [7] viewed the software engineering process using other disciplines

such as metaphysics, epistemology, and psychology of cognition. In fact, software

development is actually a process of knowledge construction. However, none of the

above approaches evolve from constructivism and learning approaches. Recently,

the analogy between constructivist learning and incremental software development

process has been recognized by Rajlich and Xu (2003) [119], who identified four

cognitive activities (absorption, denial, reorganization and expulsion) which

correspond to incremental change, rejection of change request, refactoring and

retraction, four programming activities.

The large volume of knowledge that must be manipulated during software

development requires tool support. Although there are some suggested tools for

program understanding and software design, most documentation tools generate

documents after the programs have been completed, rather than documenting the

knowledge on the fly during incremental development process. Some

www.manaraa.com

16

documentation tools like Javadoc [81] extract knowledge from comments rather

than from actual code. The design community has attempted to create methods and

notations for capturing design information, but their attempts have failed to become

standard practice [129]. One common approach is use of the expert system that

requires domain experts to articulate their knowledge to create a knowledge base in

general. This approach cannot capture specific knowledge used for the system, and

therefore, will not be of much help in maintenance and evolution. Another approach

is to design tools to document design decisions when they occur during design

meetings. There are problems with this approach, the most obvious one being the

excessive amount of time spent by designers in writing detailed notes about their

discussion, and the problem of the notes being insufficiently rich to capture the full

complexity of the design decisions.

Ribbins (1999) [122] used cognition theories as guidance in the development

of design tool features. A tool was proposed to provide developers with efficient

access to the group memory in a software development project [39]. Neither tool

was built based on the cognitive activity, and therefore neither can capture the

necessary and complete domain and programming knowledge. Knowledge can be

more easily and correctly captured during the software development process. Such

a tool should support the mental process of the incremental development and

should be based on cognitive activities. Once we capture this knowledge, it will

further accelerate software development. With the help of this captured knowledge,

debugging and program maintenance would be made much easier.

www.manaraa.com

17

2.1.2 Program Debugging

Debugging refers to the combined process of testing and code correction.

Errors can be made in various stages of software development or evolution, such as

specification, implementation, or debugging of earlier errors [84]. Programmers

spend a large part of their efforts in debugging [21]. In spite of the progress in the

past years, debugging still remains labor-intensive and difficult [3].

Program debugging involves a complex cognitive process and requires

comprehension of both program behavior and program structure. It is one of the

most challenging areas of software engineering. In turn, debugging requires

program comprehension and testing as the central tasks [24] [137].

Vessey (1983) [153] and Gould (1975) [69] conducted research in the

cognitive aspects of debugging and characterized debugging as an iterative process

of synthesizing, testing, and refining hypotheses about fault locations and repairs.

Araki (1991) [3] provided a general discussion on the framework of debugging and

emphasized the process of developing hypotheses. Bisant and Groninger

(1993)[17] considered that fault detection involved two processes: a comprehension

process and a fault location process. Model-based debugging techniques have

been proposed by Ducasee (1993) [49] who emphasized that different parts of the

program are perceived by the user as having different levels of reliability.

Yoon and Garcia (1998) [179] investigated how tools can help programmers

obtain clues about the bugs. Two debugging techniques were identified:

comprehension strategy and isolation strategy. In comprehension strategy, the

www.manaraa.com

18

programmer searches for the difference between the program requirements and the

programs’ actual behavior. In isolation strategy, the programmer makes hypotheses

about the bugs and then searches for bug locations in the program. Van et al.

(1999) [152] performed a field study on the understanding of software during

corrective maintenance of large-scale software. They found that programmers work

at all levels of abstraction (code, algorithm, application domain) at an approximately

equal level and frequently switch between levels of abstraction. Three steps of the

debugging process have been recognized by Uchina et al. (2000) [151]: program

reading, bug location and bug correction. Mateis et al. (2000) [94] described a

technique to diagnose errors involving objects and reference aliasing. Ko and Myers

(2003) [84] have presented a model of programming errors. They found that most

errors were due to attention and strategic problems in implementing algorithms,

language constructs, and uses of libraries.

The common debugging tools are integrated into compilers, i. e., the

integrated development environments (IDEs). The IDEs provide some ways to

capture some of the language-specific predetermined errors (e.g., missing end-of-

statement characters, undefined variables, and so on) without requiring compilation.

Another way to help debugging is the visualization of the necessary underlying

programming constructs as a means to analyze a program [5]. There are some

researches which try to automate the debugging process through program

slicing[78].

2.1.3 Program Comprehension

www.manaraa.com

19

In software evolution or software maintenance, programmers modify or add

specific program concepts or features based on the change request. In order to

modify the program, the program understanding process should be performed first.

Therefore, program understanding plays an important role during software

evolution[28].

A large body of available research deals with program comprehension [24]

[89, 90]. Various models have been established. According to the top-down theory

of comprehension [24], the programmers first accept a hypothesis that describes

the program and then attempt to verify this hypothesis. Further hypotheses may be

required in order to build a hierarchy of hypotheses. Rajlich et al. (1994) [117]

proposed a layer program comprehension strategy in which the programmer

creates a chain of hypotheses and subsidiary hypotheses concerning the properties

of the code and then looks for evidence (beacons) in the code. This approach is

very close to the top-down model. After conducting an experiment on program

comprehension, Fix et al. (1993) [55] presented five abstract characteristics of the

mental representation of computer programs: hierarchical structure, explicit

mapping of code to goals, foundation on recognition of recurring patterns,

connection of knowledge, and grounding in the program text. His approach can also

be classified into the top-down approach.

Letovsky (1986) [90] introduced the bottom-up theory, in which programmers

gather small chunks of source code to form higher level abstractions. These

abstractions are recursively grouped to produce a high level comprehension of a

www.manaraa.com

20

program. Schneiderman (1979) [137] also considered that understanding a program

involves the creation of multilevel internal semantic structures. This multilevel

structure is created in a bottom-up manner, where until the entire program is

understood, programmers understand the function of a group of statements and

pieces them together to obtain higher levels of chunks. Further, Pennington

(1987)[111] suggested that program readers build at least two mental models of the

program they are studying, a program model and a domain model. The program

model is characterized by an abstract knowledge of the program's text structures

and the domain model relates objects and functions in the problem domain to

source-language entities.

An as-needed approach was suggested by Littman et al. (1986) [91], where

programmers look only at the code related to a particular problem or task. Similarly,

after experiments on expert programmers modifying PASCAL programs,

Koenemann and Robertson (1991) [85] thought that program comprehension is a

goal-oriented and hypothesis-driven problem-solving process, In this concept,

programmers used as-needed strategy rather than systematic strategy during

program comprehension. Clement (1996) [33] proposed an approach, similar to as-

needed approach, in which he suggested a narrowly-focused, reusable domain

model to integrate and to aid in the process of top-down system comprehension.

Mayrhauser and Vans (1994) [157] found that maintenance programmers

use a multi-level approach that switches between the three postulated areas

(domain model, situation model, and program model) and the maintenance

activities are described by a small set of cognitive processes which aggregate into

www.manaraa.com

21

higher level process (on several level of abstraction). Von Mayrhauser and Vans

(1998) [160] further pointed out that program comprehension is not a simple top-

down or bottom-up process but rather that in which programmers apply various

models depending on their tasks and their domain or programming knowledge.

Programmers with more knowledge of domains more often prefer the top-down

approach than those with less domain knowledge. Programmers with less

programming knowledge are more likely to use the bottom-up approach in program

comprehension. Based on their observations, Von Mayrhauser and Vans

(1998)[160] proposed an integrated program comprehension model that combines

top-down, bottom-up, and as-needed; any of the three sub-models may be used at

any time during program comprehension process.

Soloway et al. (1988) [142] observed that the process of program

understanding is a cycle that includes reading the code (obtain the knowledge),

raising questions (apply knowledge), making a conjecture (synthesize and generate

hypothesis) and searching through code for answers (evaluation). The process is

also called the read-question-conjecture-search cycle.

A small knowledge base was proposed in order to help the apprentice

navigate the software and help understanding the program [130]. Davis (1990) [43]

studied the roles of programming plans and selection rules during program

comprehension. Benedusi et al. (1993) [12] studied the role of test cases and

human activities in program comprehension.

Semantic and syntactic knowledge comprehension was also studied by

Shneiderman and Mayer (1979) [137]. They found that programmers retain both

www.manaraa.com

22

semantic and syntactic knowledge in long-term memory, and that they use short-

term and working memories in performance of various program-related tasks.

Syntactic knowledge is programming language dependent, but semantic knowledge

refers to algorithms or data structure. The chunk concept was first proposed by

Davis (1984) [46] to represent the basic knowledge unit in the program. The

knowledge unit in a program was also examined and classified into three categories

by Clayton et al. (1998) [32]: knowledge type, design decision used, and the type of

analysis required in uncovering the atom. Robillard (1999) [124] identified two types

of knowledge in software programs: topical and episodic. Topical knowledge refers

to the meaning of words and episodic knowledge consists of people’s experience

with knowledge.

 Clayton et al. (1997) [30] described the application of a domain-based

program understanding process, called Synchronized Refinement, to the problem of

reverse engineering of the Mosaic World Wide Web browser software. The domain

knowledge in program comprehension was also studied by Shaft and Vessey

(1995) [132] and Rugaber (2000) [128]. Rugaber (2000) [128] even proposed a

domain-based understanding approach and suggested a tool needed to store those

domain knowledge for future maintenance and reuse.

Concept location is a key issue in program comprehension. Concept location

constructs the mapping between programming concepts and the related software

components [16]. Wilde et al. (1995) [168] developed a concept location technique

called Software Reconnaissance that is based on analysis of program execution

traces. Chen and Rajlich (2000) [28] proposed a method based on a search of static

www.manaraa.com

23

code that is represented by Abstract System Dependence Graph and which

consists of control flow and data flow dependencies among the software

components.

Baniassad and Murphy (1998) [6] introduced the conceptual module

approach that allows a software engineer to simultaneously perform queries about

both the existing and the desired source structure.

Many tools have been designed and are available for program

comprehension during this stage [138]. They can be classified into five categories:

 Language-based tools: emphasize a specific language and its problems.

 Paradigm-based tools: focus on a single programming paradigm.

 Dependency-analysis based tools: maintain static/dynamic program

dependencies.

 Hypertext-based tools: use hypertext techniques to understand

structural/behavioral aspects of programs.

 Program-animation based tools: use animation to understand the

behavior of a program.

It is worth to notice that the cognitive approach has been used to guide the

tool development for program understanding [180]. Singer et al. (2005) [139]

demonstrated a tool to support browsing through software that kept track of the

navigation history of software developers. Storey et al. (1999) [147] examined

various cognitive models and suggested some issues to guide the development of

tools that could be used to help in software exploration. However, their tools are for

www.manaraa.com

24

software evolution only; hence, they do not capture the complete domain and

programming knowledge.

2.1.4 Novices and Experts

Soloway and Ehrlich (1984) [141] observed that during software

development, experts employ high-level plans while novices use more lower-lever

ones. Koenermann and Robertson (1991) [85] emphasized that experts primarily

use the top-down strategy and novices often use the bottom-up strategy.

A field study was performed by Visser (1987) [154] on professional

programmers to study the strategies used when they were doing programming. He

found that programmers used a number of data sources and included program

listings into them, so programmers may recall that a solution exists in a listing, find

the listing, and then use the coded solution as a plan for the current problem.

Several other research projects deal with the differences between novices

and experts during debugging procedures. Gugerty and Olson (1986) [72] and

Vessey (1983) [153] found that the knowledge differences between novices and

experts on the program and programming explain why experts can debug more

accurately. Spohrer and Soloway (1986) [145] and Gugerty and Olson (1986) [72]

observed that novices often introduced more new bugs to the programs than do

experts.

The differences between novices and experts during program

comprehension have been well studied [13, 111]. Holt et al. (1987) [77] examined

www.manaraa.com

25

programmers' cognitive representations of software by making either simple or

complex modifications to the program using three different design methodologies.

Berlin (1993) [13] provides some insights into the differences between experts and

novices during program comprehension. The novices were probably well-trained

professionals but without the specific domain and/or system specific knowledge the

experts had. Berlin (1993) [13] also discussed the types of knowledge, and

differences that distinguish the experts from the novices and also discussed how

this may factor into productivity differences. His observations indicate the multi-

faceted knowledge needed for real-life programming expertise, and the knowledge

and skills that make experts so much more effective in their daily work. He also

showed that one major reason that makes good programmers more productive is

that they know who to ask about particular problems and are able to quickly refer to

other peer colleagues.

Burkhardt et al. (1998) [26] analyzed object-oriented (OO) program

comprehension by experts and novices in three dimensions of comprehension

strategies: the scope of the comprehension, the top-down versus bottom-up

direction of the processes, and the guidance of the comprehension activity. They

found out that experts used top-down, inference-driven strategies, while novices

rarely used the top-down approach, but instead, used the execution-based

guidance procedure. Wiedenbeck (1999) [167] studied the comprehension process

of novice programmers on small procedural and object-oriented programs. She

found that novices tend to develop a more function-related mental representation

with less emphasis on data flow.

www.manaraa.com

26

Detienne (1990) [47] conducted experiments on professional programmers in

order to study the difficulty with OO language. As one of the earliest empirical

studies of impact of OO programming, it was perhaps instrumental in initiating

further work in this area. However, Detienne’s study has some limitations and

therefore, there are doubts concerning the validity of its argument regarding the

inadequacies of the OO approach.

Fix et al. (1993) [55] studied how novices and experts understand Pascal

programs and found that expert programmers use more abstract mental

representations for the programs than do novices. Studies of differences between

procedural and OO programmers were carried out by Corritore and Wiedenbeck

(2000) [36] and Ramalingam and Wiedenbeck (1997) [121]. They found that the OO

programmers tended to use a strong top-down approach to program understanding

during an early phase of study of the program, but increasingly used a bottom-up

approach during the maintenance tasks. Further, the procedural programmers used

a more bottom-up orientation throughout all activities [37] [38] [36]. Mosemann and

Wiedenbeck (2001) [100] found that novice programmers used a sequential or

control flow view of the program during program comprehension and had difficulties

with a data flow view.

Perkins and Martin (1986) [112] described the main difficulties faced by

novices in general as “fragile knowledge” and “neglected strategies”. Novices

obtain the knowledge, but do not know how to apply it. Gilmore (1990) [66] also

studied the programming knowledge of experts and realized that expert

www.manaraa.com

27

programmers possess many programming strategies, while novices suffer from lack

of both knowledge and adequate strategy to cope with programming problems.

Other differences between novice and expert programmers were studied by

Pennington (1987) [111] who found that experts use cross-referencing strategies

whereas novices usually apply code-based and domain-based strategies. Davies

(1993) [44] also studied coding activities by experts and novices in terms of

information externalization strategies. He found that experts tend to rely much more

upon the use of external memory sources.

2.1.5 Summary

Based on the above brief review of cognitive research in software

engineering, we find that there are significant bodies of research on programming

understanding and program debugging. However, there is not much research on

incremental software development and program design. Particularly, there is not a

common model proposed for all the software engineering processes, and all the

existing models are one-dimensional and can only be applied to individual

processes. On the other hand, no model explains the cognitive activities in detail,

i.e. we do not know exactly how programmers do when they have conducted

software engineering activities. Meanwhile, a well-defined cognitive model can also

help to build tools which can improve the programming process and learning.

Although there is some research on expert programming, most of the

research is not based on application by professionals. Also, there still exists a little

www.manaraa.com

28

comparison between the cognitive activities taken by experts and novices on the

same programming problems. Therefore, we have no very clear understanding of

the differences between experts and novices from the cognitive point of view, even

though we are convinced that a better understanding the differences between

novices and experts can shed light on how to train novices into experts.

The generalization of previous research results were based primarily on

procedural or declarative languages. The impact of OO paradigms on cognitive

activities needs to be well studied.

The cognitive activities in software engineering can be studied from either

individual or team perspective. However, most of the work done so far was based

on individual programmers. There is no much Work on the collective and

collaborative aspects of cognitive activities on some software processes. Some

software engineering processes, such as pair programming, greatly involve the

knowledge from a team of programmers, or a pair of programmers. The study of

knowledge shared and cognitive activities should be useful to improve the

processes.

The cognitive processes during program comprehension and program

debugging need study from a different angle in order to understand the involved

cognitive activities in detail.

2.2 Cognitive Research Methods

2.2.1 Think-Aloud Protocol

www.manaraa.com

29

Cognitive scientists commonly use protocol analysis, task analysis, and

discourse analysis [51, 58, 133] in their empirical work.

Task analysis is one of the techniques that study both the subject’s actions

and the accompanying cognitive processes [133] and which is commonly used to

study subjects who have problems mastering complex behaviors. The purpose is to

get an insight into the nature of a task when it is performed in the field. Task

analysis addresses what is done, instead of what should be done, and it is seen as

a useful tool for human-computer interaction research. The data is collected

through the observations and the interviews with experts.

Discourse analysis is a way of approaching and thinking about a

problem[58]. It is neither a qualitative nor a quantitative research method, but

rather a manner of questioning the basic assumptions currently held. It allows

access to the ontological and epistemological assumptions behind a project or a

method of research.

Protocol analysis is a rigorous methodology for eliciting verbal reports of

thought sequences [51] and is the most common method to study human cognitive

processes. It identifies basic knowledge objects. In protocol analysis, subjects give

verbal reports on the cognitive processes they are experiencing during a task. The

three types of protocols involved in this are introspective, retrospective, and think-

aloud [70]. Introspective and think-aloud protocols require the subjects to report

their thoughts during a task, whereas retrospective protocols are gathered after a

task is finished. Both introspective and retrospective reports require the subjects to

www.manaraa.com

30

interpret the cognitive processes they use [51]. However in think-aloud protocol,

subjects simply say what comes to their mind when they are completing a task; they

are not supposed to comment on or to interpret their thoughts. All these types of

verbal protocols require that one subject work individually.

The think-aloud method provides a way to collect data that could not be

otherwise collected. It allows us to understand not only what the subjects are doing,

but also why, and provides a basis for investigating the underlying mental

processess during complex tasks.

The think-aloud protocol was used in 1920’s by Watson [166] to illustrate

general characteristics of the cognitive process in problem solving. The approach

was later developed into a research method, especially when tape recorders

became available in 1945. For example, Duncker (1945) [50] used it to analyze

problem-solving processes in terms of memory search. The think-aloud method was

systematically described by Newell and Simon (1972) [103] and used to build a

detailed model of problem-solving processes.

Although the think-aloud protocol was originally used in psychology [51], it

has now been used in other areas, such as medicine, usability evaluation [11],

engineering design [65] and software comprehension [156], [158]. In most cases,

think-aloud questions are used to stimulate verbalization, such as “what are you

thinking now”, “keep talking”, “think aloud”, and so forth.

Think-aloud protocol forces the subjects to speak out what is in their mind at

a particular time. Although Ericsson and Simon (1993) [51] did not find changes in

the cognitive process when subjects were asked to verbalize their thoughts, they

www.manaraa.com

31

found that certain changes occured when subjects were asked to explain their

cognitive processes.

A serious problem with think-aloud protocols is that subjects may endavour

to deliberately produce the desired data. This effect is called “placebo effect” [127].

The outcome of an experiment may be biased if the experimenter unintentionally

indicates the expectations by verbal communications or gestures like nodding when

an expected result is observed [126].

The presence of an experimenter/mentor can also be problematic because it

might affect the behavior of the subjects. Orne (1969) [108] stated that subjects can

never be neutral to an experiment; the Hawthorne effect [1] will happen when

subjects know that they are being studied, and that affects the outcome of the

experiment. In particular, the think-aloud protocol with observation and the

communication between mentor and subjects might affect the outcome [127].

A verbal report of the mental process may change the way in which a subject

interacts with the task and this may affect the subject’s decision process. The think-

aloud protocol forces subjects to speak and it interferes with the thinking

process[92]. Some subjects may experience difficulties talking when they perform

their tasks, or they may be affected by the presence of the mentor [51]. Some

people may find it difficult to verbalize their thoughts [11].

Therefore, we need to search for additional empirical methods which can be

used to study the cognitive process during software engineering processes in order

to offer relief from those problems caused by the think-aloud protocol.

www.manaraa.com

32

2.2.2 Recording Methods

The mental process of subjects requires verbalization and must be recorded

for further analysis and research.

There are many ways to record the activities performed by subjects, such as

audio recording, video recording, user notebooks, and computer logging. Among

the recording methods, video and audio recordings are most commonly used. They

provide rich and relatively permanent primary records.

Videotaping

Videotaping produces a continuous view of events and provides a detailed

record of the process. Videotaping records the movements of the mouse, the code

changes, and the communication between programmers. Normal observation tends

to emphasize events that occur more frequently, since there is more data to be

compared, whereas a video recording enables a repeated observation and

exploration of a rare event [51].

 Individual scenes can be replayed numerous times as the researchers

reflect on what has occurred, and premature conclusions can be reduced or

avoided [51]. Video provides continuous data rather than snapshot data and, hence,

it records the richness of interactions. This is of great benefit. Data maintenance is

also easy since we can store it in computer files, make copies without degradation,

or copy them directly to CDs or DVDs. We also have many options for editing.

www.manaraa.com

33

While videotaping offers many advantages, there are also limitations and

weaknesses. Subjects may be more awkward or shy in front of a video camera

than when they are near a portable audio recorder or microphone, since the later is

less noticeable or conspicuous.

The playback of a digital video may be more complex for the experimenter

than the playback of digital audio. Digital camcorders require a learning curve to

successful operation. A great deal of work is involved when video data is

transferred to a computer. This includes the file format, the video compression

scheme, the output file types, the delivery medium etc. Producing the digital video

file is also time-consuming. Rendering a full-screen video of less than an hour’s

duration on a 2GHz PC with 512 Mb of RAM can take up to 4-5 hours to complete.

The cost of equipment resources, the learning curve, and the production time

for producing digital audio clips is less than the cost occurred in digital video

production. Shooting, editing and producing video requires more time to learn and

to produce than does audio production. Due to the huge amount of information

being processed, video clips processing requires a higher level computer, while a

low-end PC would perform the task satisfactorily in audio production.

Voice recording

As recently as ten years ago, voice-recording used to be commonly used for

recording processes during cognitive research. Until the latter part of 1990s, most

voice recording in experiment or field study had been done with the traditional

www.manaraa.com

34

cassette tape recorder. Subsequently, the digital recording devices have been

invented and voice recording software has been developed. They now clearly

outrank tape recorders in terms of sound quality, reliability, and usability.

Table 2.1: The comparison between videotaping and voice-recording

Advantages Disadvantages
Videotaping Can capture screen

dynamically;
Can capture everything we
need;
Easy to translate the data into
episodes;
Have high recording quality;
Be easy to maintain and store
the tapes

Higher cost of purchasing tapes and equipment;
Have to have the mentor presented;
Need to Change tape which could lost data;
Have some Hawthorne effect;
Editing takes time;
Coordinate takes time;
Need a learning curve to use the equipment.

Voice-
recording

Cost effective with free
software;
Be flexible to schedule;
Can capture screen-shots as
needed;
Less Hawthorne effect;
Easy to edit the data

Cannot capture the whole process;
Have a little more work to translate into episodes;
Recording quality could be low.

Under certain circumstances, voice-recording is more preferred to video-

taping, because of the limitation of videotaping we have discussed in the previous

section. The advantages of voice-recording method are commonly accepted to be:

 No learning required to manipulate techniques

 Easy to conduct

 Easy to play back

 Minimum Hawthorne effect since the microphone can be put in a hidden

place

 Less cost in equipment

www.manaraa.com

35

Of course, voice-recording cannot record the screen changes made by

programmers, and mouse movement. Therefore, at present, it is not commonly

used.

Table 2.1 lists the comparison between videotaping and voice-recording.

2.2.3 Coding Schemes

After the data is captured, it is transcribed into “raw protocol”. The raw

protocol is then divided into small units called “segments” or “episodes”. After the

data is transcribed and divided into episodes, data analysis is conducted.

Some researchers, such as Meijer and Riemersma (1986) [98] and Confrey

(1994) [35] have supported their conclusions by directly citing the protocols.

However, the coding scheme is becoming more and more popular; without a coding

scheme, an analysis on the data is difficult or sometimes even impossible to

complete [59].

In software engineering, von Mayrhauser and Lang (1999) [156] pointed out

that one of the difficulties for protocol analysis is to compare the results across

different studies. That is why a coding scheme is needed to provide a unified

classification; the scheme facilitates the replication of the protocol analysis and the

assessment of the validity of its results.

Pennington (1987) [111] proposed a coding scheme for program

comprehension analysis. Oslo et al. (1992) [107] developed a coding scheme to

observe the programmers’ behavior during design meeting. Shaft (1995) [132]

www.manaraa.com

36

developed a coding scheme to help code the verbal data when she studied the role

of domain knowledge in program comprehension. Most recently, von Mayrhauser

and Lang (1999) [156] described a detailed coding scheme for systematic analysis

of program comprehension.

Therefore, additional code scheme or cognitive model may help to

understand the cognitive process during software engineering processes and in

turn, may improve the quality of software developed.

2.3 Cognitive Theories

2.3.1 Introduction

There have been numerous publications on constructivist learning, including

the classical work of Piaget (1954) [114]. Piaget observed two learning activities:

assimilation and accommodation. Von Glasersfeld’s summary in [155] also describes

these activities. In [106], Novak (1998) addressed theories of learning, knowledge,

and instruction, and used concept maps as tools to describe the knowledge.

Many learning theories were developed for the purpose of providing an

explanation and analysis of classroom learning [48]. Bloom and his colleagues [18]

identified six levels of learning known as the Bloom taxonomy of the cognitive

domain, starting from the knowledge (or recognition) at its lowest level, followed by

comprehension, application, analysis, synthesis, and evaluation.

www.manaraa.com

37

Vygotsky (1978) [161] asserted that culture is the most important issue in

individual learning. His social cognition learning theory emphasizes social interaction

in the development of cognition. Fischer and Ostwald (2001) [54] discussed the social

and evolutionary process involved in knowledge construction during software

development. Although social interaction is an important element during software

engineering processes, we believe that our emphasis must be on individual

programmer and the autonomous construction of their knowledge. As a result, we

find this theory less applicable.

Distributed cognition was proposed by Hollan et al. (2000) [76]. It

encompasses interactions among people, resources, and materials. Wallenstein

(2003) [163] proposed a framework for a development tool design based on

distributed cognition theory. Since some of the software engineering processes,

such as program comprehension, program debugging, are often individual work that

involves less resources and interaction with other people, therefore distributed

cognition theory is not applicable here.

Observational learning [15] states that learning occurs through the simple

processes of observing someone else's activities. However, software engineering

processes involve more complicated processes than simple observation; therefore,

observational learning is not suitable for studying the cognitive process during

software engineering processes.

Gardner (1993) [64] proposed the theory of multiple intelligences and

considered eight different intelligences to count for a broader range of human

learning potential: linguistic, logical-mathematical, spatial, bodily-kinesthetic, musical,

www.manaraa.com

38

interpersonal, intrapersonal, and naturalist. The theory provides guidance for an

optimal use of talent, but it does not concentrate on the cognitive activities involved in

the learning. Therefore we do not use it in explaining software engineering processes.

Brain-based learning is based on the structure and function of the human brain

and emphasizes the fact that the brain can perform several activities spontaneously,

such as the processes of tasting and smelling. Learning involves both focused

attention and peripheral perception and requires both conscious and unconscious

processes [82]. Because brain-based learning deals with the functions of the brain

rather than the cognitive activity of learners, we did not find it applicable in our

situation.

Control theory claims that behavior is not caused by a response to an outside

stimulus, but inspired by what a person wants most, such as survival, love, and

freedom [67]. Again we do not find that view useful for the study of software

engineering processes.

Baragry and Reed (2001) [8] viewed software engineering processes using

other disciplines such as metaphysics, epistemology, and psychology of cognition. To

understand the design process, Ribbins et al. (1998) [123] used several cognition

theories, including Reflection-In-Action. We believe that it might be useful to study the

software engineering processes from disciplines other than the cognitive science, but

the learning theory should be the more useful one.

We concluded that although these theories contain valuable insights, they are

not directly applicable to our purposes in the study of the cognitive activities during

incremental software development, program debugging and program comprehension.

www.manaraa.com

39

The most promising theories we found include the constructivist learning theory and

Bloom taxonomy [177]. We adopted them as components of our self-directed

learning model and will explain them in the next two sections.

2.3.2 Constructivist Learning Theory

Constructivist learning theory explains the process through which people

learn new facts and then add them to their knowledge base. It is based on the work

of Piaget (1955) [114]. The original aim of Piaget’s work was to explain learning in

children, but the constructivist theory also extends to adult learning and to

epistemology [155]. In [155], von Glaserfled (1995) described constructivism as a

theory of knowledge. He defined radical constructivism as a theory of learning, and

saw facts as being actively received either through the senses or through

communication.

The basic assumption of this theory is the hypothesis that the learners

actively and incrementally construct their knowledge. They start from some pre-

existing knowledge and extend it by connecting new facts to previously learned

knowledge. According to constructivism, it is not possible to assimilate new

knowledge without having some structure developed from a previous knowledge.

Knowledge is actively constructed by learners [60]. It is individually constructed by

learners who try to explain things they do not completely understand and socially

constructed by a group of learners who convey meanings to each other. They may

www.manaraa.com

40

go through stages in which they may accept ideas that they will later discard as

being wrong.

Piaget characterized constructivist learning in terms of two cognitive

activities, assimilation and accommodation. Assimilation describes how learners

deal with new knowledge, whereas accommodation describes how learners

reorganize their existing knowledge. Assimilation and accommodation are

complementary and inseparable, although one may be predominate at any

particular time. They are the two poles of an interaction between the organism and

the environment.

Constructivist learning theory explains the learning process for adults and

children. Since the software engineering process can be viewed as a problem-

solving process and a learning process, it might be a good idea to apply the

constructivist learning theory in explaining the cognitive activity in software

engineering. On the other hand, the software engineering process may be a good

test-bed for constructivist learning theory, by further identifying the activities

involved.

Recently, Rajlich (2002) [115] and Exton (2002) [52] applied constructivist

learning theory to program comprehension. Rajlich (2002) [115] considered that

programmers begin with the pre-existing knowledge and conduct program

comprehension using two processes: assimilation and adaptation. Exton (2002) [52]

overviewed the existing program comprehension strategies and correlated them

with constructivism learning theory.

www.manaraa.com

41

Rajlich and Xu (2003) [119] divided the two activities: assimilation and

accommodation into four activities: absorption, denial, reorganization and expulsion.

They provided a comparison between constructivist learning and the incremental

software development process. Rajlich and Xu (2003) [119] also correlated the four

programming activities: incremental change, reject of change request, refactoring

and retraction, with the four cognitive activities. We used the extended constructivist

theory as a component of our self-directed learning theory [177] [174].

2.3.3 Bloom’s Taxonomy of the Cognitive Domain

Beginning in 1948, Bloom headed a group of educational psychologists who

undertook the task of classifying educational goals and objectives. They [18]

identified three domains of learning: cognitive, affective, and psychomotor. The

cognitive domain is for mental skills, the affective domain is for growth in feelings or

emotional areas, and the psychomotor domain is for manual or physical skills. The

first one is commonly referred to as “Bloom’s Taxonomy of the Cognitive

Domain”[18]. For simplicity, we refer in this thesis to the Bloom’s Taxonomy of the

Cognitive Domain as Bloom’s taxonomy or Bloom’s levels.

Bloom identified six levels within the cognitive domain. The lowest level is the

simple recall (knowledge) or recognition of facts. Then there are increasingly more

complex (comprehension, application, and analysis) and abstract mental levels until

the levels of synthesis and evaluation [18] are reached. The categories can be

considered as degrees of difficulty and proficiency.

www.manaraa.com

42

Table 2.2: The cognitive domain taxonomy and illustrative examples

Level Sample verbs Sample Behaviors
Recognition
or Knowledge

collect, copy, define, describe, enumerate,
examine, identify, label, list, name, quote, read,
recall, retell, record, repeat, reproduce, select,
state, tell

Student is able to
define the six
levels of Bloom’s
taxonomy

Comprehension associate, cite, compare, contrast, convert,
differentiate, discuss, distinguish, elaborate,
estimate, explain, extend, generalize, give,
group, illustrate, interact, interpret, observe,
order, paraphrase, review, restate, rewrite,
subtract, trace

Student explains
the purpose of
Bloom’s taxonomy.

Application administer, apply, calculate, capture, change,
classify, complete, compute, construct,
demonstrate, derive, determine, discover, draw,
establish, experiment, illustrate, investigate,
manipulate, modify, operate, practice, prepare,
process, produce, protect, relate, report, show,
simulate, solve, use

Student writes an
instructional
objective for each
level of Bloom’s
taxonomy.

Analysis analyze, arrange, breakdown, classify, compare,
connect, contrast, correlate, detect, diagram,
discriminate, distinguish, divide, explain,
identify, illustrate, infer, layout, outline, points
out, prioritize, select, separate, subdivide

Student compares
and contrasts the
cognitive and
affective domains.

Synthesis adapt, combine, compile, compose, construct,
correspond, create, depict, design, devise,
express, format, formulate, facilitate, improve,
integrate, invent, plan, propose, rearrange,
reconstruct, refer, relate, reorganize, revise,
specify, speculate, substitute

Student designs a
classification
scheme for
educational
objectives that
combines the
cognitive, affective,
and psychomotor
domains.

Evaluation appraise, assess, conclude, criticize, convince,
decide, defend, discriminate, evaluate, explain,
grade, judge, justify, measure, rank,
recommend, reframe, support, test, validate,
verify

Student judges the
effectiveness of
Bloom’s taxonomy.

Table 2.2 outlines each level of cognition along with illustrating verbs and

simple examples that illustrate the type of the thought activity of that level [42, 79].

Bloom’s taxonomy is easily understood and has been studied and widely used

www.manaraa.com

43

today in education. Teachers often use it to guide their instruction and to prepare

questions for students [149]. There is some debate in educational circles if the

synthesis layer is truly below the evaluation layer [104], but that discussion is

beyond the scope of this thesis and does not impact our conclusions.

 The six levels of Bloom’s taxonomy clearly explain the mental process

involved in student learning in the classroom. Software engineering process involves

cognitive activities and is also a learning process. It would be useful to further study

Bloom’s Taxonomy of the Cognitive Domain, and to use it for analyzing the software

engineering processes.

Bloom taxonomy has been applied by Buckley and Exton (2003) [25] to

assess programmers’ knowledge. They used Bloom taxonomy to correlate various

software maintenance tasks.

We [173] used the Bloom taxonomy to study the program debugging

process. We identified that programmers have to move from one level to another

higher level of Bloom’s taxonomy in order to make updates and debug a program.

www.manaraa.com

44

CHAPTER 3

RESEARCH METHODS

Research methods used in this thesis are discussed in this chapter. We

mainly applied case study method in our work. We also developed dialog-based

protocol method for our research which is described below. In this chapter, we also

discuss the recording methods used in our work.

3.1 Case Studies

Case study research is the most common qualitative method used in

information systems [2]. Among numerous definitions of the scope of a case study,

a typical one is as follows [178]:

A case study is an empirical inquiry that:

“Investigates a contemporary phenomenon within its real-life context,

especially when the boundaries between phenomenon and context are not clearly

evident."

Case study research can be positivist, interpretive, or critical, depending

upon the underlying philosophical assumptions of the researcher. Correspondingly,

there are three kinds of case studies: exploratory, explanatory, and descriptive.

The essential characteristic of case studies is that it strives towards a holistic

understanding of systems of action. Therefore, case studies are a valuable method

www.manaraa.com

45

of research, with distinctive characteristics that make them ideal for many types of

investigations.

In order to study the cognitive process, we conducted a series of case

studies on incremental software development, program debugging and software

evolution after having obtained significant experience from the pilot study. The basic

method was to give program problems and ask the programmers to conduct

incremental software development or to evolve the programs. They were recorded

in order to document all the information involved during this process. They were

given a guideline to direct their experiment and monitored. Based on raw data, we

did analysis and modeling, recognizing the cognitive activities with the help of our

cognitive model.

For each case study on incremental software development and program

debugging, we used our empirical method to collect the following data for individual

action or mental activity as taken by programmers:

 Construction activities (absorption, reorganization, denial, expulsion)

 Bloom’s taxonomy levels (recognition, comprehension, application,

analysis, synthesis and evaluation)

 Domain concepts and programming concepts created or revisited

 Phenomena occurred and their relationship with concepts

 The number of times of the concepts which have been visited

 The number of new concepts added

Then we used the self-directed learning theory to explain our case study

results. The self-directed learning theory is described in Chapter 4 in detail.

www.manaraa.com

46

The pilot study is described in Appendix A. Other case studies are discussed

in Chapters 5, 6, and 7. The detailed data are in appendixes B and C.

3.2 Dialog-Based Protocol

3.2.1 Description of the Dialog-Based Protocol

As mentioned earlier, the think-aloud protocol is commonly used in cognitive

research during software engineering processes. Parnas (2003) [110] discussed the

limitations of empirical studies in software engineering due to the Hawthorne

effect[1]. In a previous chapter, we have discussed the think-aloud protocol, and

have discovered some of its defects. In order to reduce the defects of think-aloud

protocol, particularly the Hawthorne effect and placebo effect, we propose a dialog-

based protocol (see Figure 3.1).

Figure 3.1: Steps of dialog-based protocol

Recording the dialog

Transcribing

Separating episodes

Classifying cognitive activities

Using dialog in a task

www.manaraa.com

47

The dialog is a conversation between two people, and it allows the two

people to share ideas and to learn from each other. The dialog contains a large

quantity of information which has been used as the raw data for studies in many

fields, such as linguistics, psychology, sociology, and literature [19].

During pair programming, two programmers work side-by-side on design,

algorithm selection, implementation, and testing at one machine [10]. Since the

programmers need to cooperate with each other, they must verbalize their thoughts

to each other so as to enable their partner to receive and understand those ideas.

The dialog allows the mental process to be easily verbalized and thus, can reduce

the Hawthorne effect and placebo effect, since programmers can easily forget that

they are being studied when they talk freely.

If the paired programmers are allowed to speak of all that comes to their

minds, one can record their communication and analyze it from the point of view of

cognitive activities. We call this method the Dialog-Based Protocol. It is derived from

the idea of pair programming [10]. The dialog-based protocol is similar to the think-

aloud protocol. One major difference between the two protocols lies in the fact that in

the think-aloud protocol only one subject is required to speak his/her own thoughts,

whereas in the dialog-based protocol, two people are verbally expressing their

thoughts while they complete their tasks. Both protocol techniques require the

process to be recorded for analysis, either as audio or video. The anticipated

advantages are summarized in Table 3.1 and discussed in the following section

when a comparison is made with think-aloud protocol.

www.manaraa.com

48

3.2.2 Comparison with the Think-Aloud Protocol

According to Ericsson and Simon (1993) [51], the think-aloud protocol can

only produce a subset of thoughts. We speculate that dialog-based protocol can

force partners to explain all the essential issues clearly to each other, thus, allowing

for a more complete documentation of the process. Also, the dialog-based protocol

requires continuous verbalization during a programming task. This could provide a

more complete picture of the cognitive process than the think-aloud protocol,

because the latter is very likely to be constantly disrupted by the experimenter.

However, since subconscious thoughts will be missing from the dialog, we realize

that even in dialog-based settings the recorded dialogs might not be complete.

Correctness of the data is also an important factor in protocol analysis.

Because of the disturbance of the subjects in the experiment, the think-aloud data

might contain invalid portions. Questioning or reminding the subjects may change

the cognitive processes. In the dialog-based setting, there is no communication

between the mentor and the subjects. Therefore, we speculate that the invalid

portion of data is reduced.

Another problem associated with the think-aloud protocol is the

misinterpretation, because some subjects may have difficulties in explaining the

process. However, in dialog-based sessions, subjects have to explain all important

points exactly to their partners, and as a result, such misinterpretations should be

reduced.

www.manaraa.com

49

Table 3.1: Anticipated comparisons between Think-Aloud Protocol
and Dialog-Based Protocol

Think-Aloud Dialog-Based

Completeness of data incomplete more complete

Correctness of data moderate high

Hawthorne effect present minimized

Placebo effect present minimized

Performance of subjects more affected less affected

Mentor Presence necessary unnecessary

Pairing problem does not exist exists

The think-aloud protocol forces subjects to speak and interferes with the

thinking process [92]. Some subjects may experience difficulties talking when they

perform their tasks, or they may be affected by the presence of the mentor [51].

Some people may find it difficult to verbalize their every thought [11].

We speculate that dialogs can be recorded under more natural

circumstances than think-aloud sessions. When people collaborate, they are

required to give arguments in order to clarify their thinking. They might forget that

they are recorded, thereby reducing the Hawthorne effect.

The think-aloud protocol may also impact the programmers’ performance,

because they have to conduct the tasks and also verbalize them. Berry and

Broadbent (1990) [14] reported that people who were not thinking aloud performed

faster than those who were. Since dialogue is inherently a part of many activities

involving partners, the dialog-based protocol incurs no performance overhead when

used in an applicable experiment (see Table 3.1).

www.manaraa.com

50

The mentor must be present in think-aloud protocol since subjects need to

be reminded to verbalize the thinking. For the dialog-based protocol, the presence

of the mentor is not necessary since the programmers need to communicate

anyway (see Table 3.1). Therefore, the placebo effect is reduced. Besides, the cost

of the presence of the mentor during the experiment is higher in think-aloud protocol

than in dialog-based protocol.

Pairing might be an issue in the dialog-based protocol; some pairs work well

together while others do not. Some subjects may be embarrassed to speak out in a

pair whereas he/she would be more willing to comment in a think-aloud setting.

Therefore, the subjects chosen for the case study have to be good communicators

and two programmers in the pair should be able to work together.

3.3 Recording Methods

The recording methods might affect the experiment as well, because when

the subjects know that they are being recorded they might alter their behavior.

Therefore, choosing the right recording method for data collecting is an important

issue. We used videotaping and screen capturing in our experiment.

3.3.1 Videotaping

As discussed in Chapter 2, videotaping is the most common recording

method used for collecting empirical data in cognitive research. The video provides

www.manaraa.com

51

continuous data rather than snapshot data, and it records the richness of

interactions. We used digital camera to record two pairs’ experiment.

3.3.2 Software Screen-Capturing

For the study of cognitive activities in software engineering, the screen

changes performed by the programmers and their communication are far more

important than other visual information, such as programmer movements. Screen-

capturing software records screen changes.

In recent years, the screen-capturing programs have become more

sophisticated. The software not only captures the screen changes, but also records

the communication between programmers. The screen-capturing software has

evolved into an effective tool for collecting data during cognitive research.

Screen-capturing does not require extensive operation knowledge, since it

creates media files which can be operated easily. There can be a few seconds’

delay in the screen change capture. As a result, there is a possibility that some

faster changes may have happened during this time and that they are not found in

the screenshots. However, since programmers can not change code as fast, such

delays do not produce any substantial loss of data.

An example of screen-capturing software is Microsoft Producer [99], which

supports screen-capturing and voice-recording automatically at the same time.

With Microsoft Producer, the mouse events, the communication between the two

programmers, and the changes of the screen are digitally recorded. Although it

www.manaraa.com

52

does not record programmers themselves, Microsoft Producer captures all of the

essential data during the programming process. Microsoft Producer delivers high

quality audio and video files in various formats. In this way, the programming

process and its environment can be stored or replayed for further analysis.

We used Microsoft Producer to record the programming activities for eight

pairs when we conducted experiment on incremental software development.

www.manaraa.com

53

CHAPTER 4

SELF-DIRECTED LEARNING THEORY

In Chapter 2, we have briefly reviewed the code schemes used by

researchers. In this chapter we will describe our novel model: Self-Directed

Learning Theory, which can be used as a coding scheme to analyze the cognitive

activity during incremental software development, program debugging and software

evolution [177].

Before applying the code scheme to do any analysis, the raw protocol should

be divided into “segments” or “episodes”. Some researchers divided the raw

protocols into episodes based on the subject’s intentions and actions [65], while

others used verbalization events or syntactic markers [51].

In our case study, we divided the dialog into episodes based on concepts

that the dialog deals with. We classified the concepts as domain concepts and

programming concepts. Domain concepts belong to a specific application domain

of the program [16], such as strike and spare in the bowling application, whereas

programming concepts belong to the knowledge of programming, such as the

programming language, program development process, design decisions, and

others. Since they drive the software development, we considered only the design

decisions in programming concepts, while other programming concepts only play a

background role. We used the following rule to separate dialog into episodes: a new

episode begins when programmers start the discussion of a different concept. If

several concepts are discussed at the same time, a new episode starts when one of

www.manaraa.com

54

the concepts is dropped. When no significant concept is involved in a particular part

of the dialog, we combined this part with the previous episode.

4.1 Description of the Self-Directed Learning Theory

The self-directed learning theory extends the constructivist learning theory

[114] and combines it with the Bloom taxonomy of the cognitive domain [18]. The

extended constructivist learning theory is used to define the differences among the

cognitive activities and Bloom’s taxonomy is used to classify the cognitive levels.

Table 4.1: The four cognitive activities and corresponding verbs

Activities Sample verbs
Absorption add, believe, choose, conclude, confirm, consider, create, define,

demonstrate, determine, identify, image, imply, interpret, make
out, prove, recognize, set up, show, start, think, verify, visualize

Denial decline, disapprove, refuse, reject, turn down
Reorganization adjust, alter, break, change, extract, fix, modify, move, pull out,

refactor, regroup, tune up
Expulsion delete, dismiss, eliminate, erase, exclude, expel, force out, get rid

of, kill, remove, take out, throw out, withdraw

As we mentioned in Chapter 2, constructivist learning is based on the work of

Piaget on child learning [114]. Piaget identified two learning activities: assimilation

and accommodation. Assimilation describes how learners deal with new knowledge,

whereas accommodation describes how learners reorganize their existing

knowledge.

We [119] find that assimilation can be subdivided into two separated

activities: absorption and denial. Absorption refers to the case when learners add

www.manaraa.com

55

new facts to their knowledge, and denial occurs when learners reject the new facts

because they do not fit into the existing knowledge base. Accommodation was also

divided into two separate activities. When the learners reorganize their knowledge

and apply it to aid future absorption of new facts, we call their cognitive activity

reorganization. When a part of the knowledge becomes obsolete and the learners

reject it, the corresponding activity is called expulsion. Table 4.1 contains the four

cognitive activities and the characteristic verbs that programmers use when using

the specific activity.

In order for learning to occur, the learners must possess preliminary

knowledge and they must be in a learning environment. Preliminary knowledge or

capabilities make learning possible; the more the learners know, the more they can

learn. We find that learners’ preliminary knowledge is based on the experience that

was supplemented with the obvious and easy-to-find facts about the program during

software engineering. Sometimes this preliminary knowledge turned out to be

inaccurate or even completely wrong, and the learners employed the four cognitive

activities to build more accurate knowledge. The result of learning is resultant

knowledge.

Bloom and his colleagues identified six levels of learning known as the Bloom

taxonomy of the cognitive domain; see Table 2.2. The six levels include the

knowledge or recognition of facts at its lowest level, followed by comprehension,

application, analysis, synthesis, and evaluation [18].

Bloom taxonomy is a well-established part of the theory of learning and we

applied it to classify the levels of the programmer cognitive activities. The Bloom

www.manaraa.com

56

levels are also assigned to each episode through the use of characteristic verbs

(Table 2.2). Table 2.2 is a composite of similar tables in [42, 79] and it was cleaned

for the purposes of software engineering, where some verbs attained a different

meaning, for example the verb compile.

Table 4.2: The self-directed learning model: All four cognitive activities may take place
at any of the Bloom levels

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Recognition v v v v
Comprehensi
on

v v v v

Application v v v v
Analysis v v v v
Synthesis v v v v
Evaluation v v v v

The self-directed learning model is a two dimensional model, composed in one

dimension of the four cognitive activities and on the other dimension of six levels of

Bloom taxonomy (see Table 4.2). The theory is particularly suitable to the situations

where learners must discover the facts of the knowledge on their own, without a

teacher. This is a common situation in software engineering.

Once the dialog has been decomposed into episodes, the self-directed

learning theory is used for protocol analysis. Each episode is classified by using the

characteristic verbs from Table 4.1 and Table 2.2. The final data is computed as the

frequencies of occurrences in episodes for each activity type and for each Bloom

level.

www.manaraa.com

57

We have applied the self-directed learning theory and dialog-based

protocol[174] [177] to conduct case studies on incremental software development

and in program debugging [173].

4.2 Comparison with Other Models

Over the past twenty years, there have been many cognitive models

proposed for program comprehension. The models include top-down model,

bottom-up model and as-needed model [24] [90] [91].

As discussed in Chapter 2, we find that all those existing models (top-down,

bottom-up etc) agree that the program comprehension process uses existing

knowledge combined with a comprehension strategy in order to acquire new

knowledge. This means that both assimilation and accommodation occur during

program comprehension, which coincides with our self-directed learning model.

However, there are some significant defects in those previous models.

First, none of them describes in detail the actual cognitive activities. All

models describe the simple procedure for program comprehension. For example,

the bottom-up model only mentions that programmers combine together small

chunks of source code to build up higher levels of knowledge, but it does not

specify what kinds of activities programmers perform. The self-directed learning

model classifies the cognitive process in detail into four activities at six Bloom’s

levels.

www.manaraa.com

58

Secondly, according to the work of Pennington (1987) [111], and Von

Mayrhauser and Vans (1998) [160], none of the existing models can explain the

entire program comprehension process. Their claim that programmers would

sometimes use the top-down approach, and sometimes use the bottom-up

approach seems to be unreasonable. Our learning model is more complete and in

greater detail. By integrating both top-down and bottom-up models it explains all the

program comprehension processes (see Figure 4.1).

Thirdly, it seems that most existing models themselves cannot explain well

the differences between experts and novices. In order to do so, several models

such as bottom-up and top-down, have to be used. This again, appears

unreasonable and inappropriate. For example, Burkhardt et al. (1998) [26] found out

that experts often used top-down, while novices rarely used the top-down approach,

but instead using bottom-up approach.

The efficiency of program understanding relies on several factors, but the

programmer’s experience in program comprehension is as crucial as his/her domain

knowledge and relevant programming knowledge. The experience and the levels of

domain knowledge obtained affect the process of creating and testing hypothesis. A

programmer who is lacking in knowledge of the program’s domain may not be able

to synthesize and understand the code. This supports Brooks’ emphasis on the

importance of domain knowledge in the understanding process [24]. Consequently,

our model can clearly explain the gap between experts and novices, one which

seems a difficult task for some existing models.

www.manaraa.com

59

6. Evaluation
5. Synthesis
4. Analysis

3. Application
2. Comprehension

1. Recognition

Figure 4.1: Comprehension strategies and their relationship with
Bloom’s levels

Bottom-up
comprehension

Top-down
comprehension

In summary, compared with our model, the top-down model mainly

emphasizes synthesis, hypothesis and evaluation, only three of the Bloom’s levels.

The bottom-up model strengthens the knowledge, comprehension and application -

the three lower levels of Bloom’s taxonomy (see Figure 4.1).

The programmer is able to obtain and to understand the knowledge so as to

synthesize information and to generate hypotheses, i.e. moving from lower levels of

Bloom’s levels to higher levels to form the understanding process. It is not possible

for the programmer to do so without knowledge, which coincides with the work done

by Soloway et al (1988) [142]. Soloway et al (1988) [142] found that the process of

programming understanding is a cycle that includes reading the code (obtaining the

knowledge), raising questions (apply knowledge), making a conjecture (synthesize

and generate hypothesis) and searching code for answers (evaluation). The

process is also called the read-question-conjecture-search cycle, which well fit in

with the learning levels in our learning model.

www.manaraa.com

60

 CHAPTER 5

CASE STUDY ON INCREMENTAL SOFTWARE DEVELOPMENT

5.1 Introduction

Incremental software development and subsequent program evolution

embraces change request analysis, impact analysis, design, coding, debugging and

testing. Programmers often start with an existing program or a program framework

that covers fundamental functionality, and then add and delete properties to and

from it. Thus, the cognitive process is central and important. Since the

programmers at different levels might learn differently [141], finding out the

differences in terms of cognitive activities is an essential part of these studies.

In this work, we used our new empirical approach including the dialog-based

protocol, software screen-capturing, and the self-directed learning theory to study

programmer learning and cognitive process during the development of a bowling

program that is a part of the Martin and Koss’ case study [93]. We replicated this

program development of ten intermediate level pairs using test-first driven and

refactoring techniques. Pair programming entails a conversation at many levels

(change request analysis, design, coding, debugging and testing), thus providing an

opportunity to analyze what that knowledge is consisted of and what cognitive

processes are involved. The test-first technique [10] requires that programmers

define the unit tests before writing the unit code. It forces the programmers to define

the exact functionality of each method which means that the system will be

www.manaraa.com

61

automatically tested as it is developed. Refactoring transforms the source code so

that it is more readable and easier to update [10]. We paid particular attention to the

differences between theirs and the experts’ learning and the cognitive activities that

were involved. The purpose of the case study is to either falsify or to prove the

hypotheses which were stated in Chapter 1 and are repeated here:

1 “There are some better ways than think-aloud protocol to study the cognitive

activities in software engineering”

2 “The combination of learning theories can be used to better study the cognitive

activities during software engineering process”

3 “Experts and intermediate programmers do follow the same cognitive processes

when they perform incremental software development”

4 “Intermediate programmers follow a similar cognitive process during incremental

software development”

Since we used a new empirical technique, we also carefully observed the

strengths and weaknesses of this technique which is discussed in Chapter 8 in

detail.

5.2 Case Study Design

We conducted case study on ten pairs. Partial results were published in [174]

and [177] [176]. The dialogue of Martin and Koss was recorded and a reenactment

of that pair programming episode was published in [93].

www.manaraa.com

62

5.2.1 Participants

Table 5.1: Programmers’ background and the date of experiment

Pair Level Month
Pair I Graduate March 2004
Pair II Graduate March 2004
Pair III Graduate February 2005
Pair IV Graduate February 2005
Pair V Graduate February 2005
Pair VI Graduate February 2005
Pair VII Undergraduate March 2005
Pair VIII Undergraduate March 2005

All participants are from the Department of Computer Science, Wayne State

University. In March 2004, four graduate students were randomly selected from the

graduate class CSC 7110 (Software Engineering Environments) which had 22

students in total. In February, 2005, all 12 graduate students of the CSC 7110

course were asked to take part in the case study. Four advanced undergraduate

students were selected from a class of 24 in CSC 4110 – Software Engineering in

March, 2005. All participants were classified as intermediate level programmers as

according to their programming ability. They had programming experience with C,

C++, and Java, but they had never used pair programming, test-first, or refactoring

practices.

The data from two pairs were rejected as invalid, and this will be further

discussed in Chapter 8. Table 5.1 shows the basic information of the remaining

eight pairs of programmers whose data are valid. The case study compared the

www.manaraa.com

63

results of these eight pairs to earlier published results of the expert programmers

Martin and Koss [93].

5.2.2 Material

The task to be solved in the case study is to implement an application which

records the Bowling scores for a bowling game. It requires the programmer pair to

understand both domain concepts and programming concepts. We can make a

comparison between the data collected during our case study and the original work

done by Martin and Koss [93]. Martin and Koss’ work was treated as the experts’

work, since they had over 15 years of programming experience and a considerable

background in pair programming, test-first, and refactoring practices. All the

participants worked on the same task. The intermediate programmers were not

originally familiar with the bowling domain, nor did they know the solution of Martin

and Koss.

The simple requirements for the bowling application are described verbally

as follows:

“To write an application that keeps track of a bowling league. The program

needs to record all the games, and accurately score of each game, with the

following simple bowling rules:

 Bowling is played on a lane with 10 pins at the end that the player should

knock down with a ball he/she throws and makes rolling on the lane.

 The placing of the ten pins makes up what we call a frame.

www.manaraa.com

64

 The object of the game is to knock down as many pins as the player can.

 A game is scored on a single line on the score sheet. The line is divided into

10 boxes or "frames".

 Scoring of the game proceeds from left to right, with the running total of pins

knocked down noted in each frame.

 The player starts bowling each frame with all 10 pins standing. The player

has two "throws" with aims to knock down all 10 pins for the current frame.

 If the player knocks down all the pins on the first throw, it is called a "strike".

The number of pins knocked down by the next two throws is added as "bonus"

points for this frame.

 If the player knocks down all the pins on the second throw, it's called a

"spare". The number of pins knocked down with the next throw will be added as

"bonus" points for this frame.

 If the player does not knock down all 10 pins in a frame after two throws, the

number of pins knocked down is added to the running total marked in the frame.

 This counting may demand one or two extra throws to complete the score of

the 10th frame (one extra throw in case of spare and two in case of strike). Extra

throws means extra frames (two if the 10th frame is strike and the first extra throw is

a strike too)”.

Figure 5.1 shows how the bowling score is recorded. Each frame except the

tenth has one little square in the upper right, where scoring for the frame's own

throws is kept. The first throw is written outside the little square, the second is

recorded inside the little square, and the cumulative score goes in the big lower part

www.manaraa.com

65

of the square. If it is a “spare”, then the second throw is marked with dark triangle. If

it is a “strike”, then a cross is marked in the second throw.

Figure 5.1: An example of scoring bowling games

5.2.3 Procedures

As mentioned earlier, the case study was carried out in March 2004,

February 2005, and March 2005.

Since the programmers were new to dialog-based protocol, test-first

programming and refactoring and it is particularly difficult for novices to adopt the

test-first [101], the programmers were provided with a training session and reading

materials on pair programming, test-first, and refactoring techniques prior to the

case study. As a part of the training, they were asked to write a simple program

using the Eclipse environment and JUnit [63] in order to understand the procedure

and to familiarize themselves with those techniques and corresponding tools.

The case study was conducted in software engineering laboratory of Wayne

State University. We videotaped the first two pairs. For the rest of pairs, we used a

free software “Microsoft Producer” that allowed us to capture computer screens and

record voice at the same time. The author acted as the mentor and monitored the

process, recorded the data, and provided the programmers with a description of the

www.manaraa.com

66

bowling rules. The mentor also answered the technical questions related to Eclipse

compiler and JUnit testing tool [63], but did not give any guidance on the design and

implementation of the program. The programmers were advised to speak loudly and

communicate effectively.

The case study was divided into several sessions, each of which lasted

about two hours.

Once the recording sessions were finished, recordings were transcribed and

then analyzed. The dialogue was decomposed into episodes using the method

described in Chapter 4.

Self-directed learning theory was employed for analyzing this observational

data. The first analysis of the protocols involved assignment of activity types as

specified by the self-directed learning model. We classified each episode according

to the four cognitive activities (i.e. absorption, denial, reorganization, and expulsion)

by using characteristic verbs defined in the self-directed learning model [174].

As a result of these activities, concepts were added or excluded from the

existing knowledge. For example, during absorption, new concepts are added to

the knowledge; during expulsion, concepts are excluded from the knowledge. The

number of concepts in the knowledge was recorded for each episode.

www.manaraa.com

67

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

episode number

nu
m

be
r o

f c
on

ce
pt

s

 _

Martin and Koss
Pair I
Pair II
Pair III
Pair IV
Pair V
Pair VI
Pair VII
Pair VIII

Figure 5.2: The number of concepts in the knowledge of each pair
during incremental software development

Then, the Bloom’s levels (i.e. recognition, comprehension, application,

analysis, synthesis, and evaluation) were assigned to each episode also through

the use of characteristic verbs (see Table 2.2). The final data was then computed

as the frequencies of occurrences in episodes for each activity type and for each

Bloom’s level.

5.3 Case Study Result

The intermediate pairs took from two and half to five hours to complete the

www.manaraa.com

68

task. All programs were completed and covered all significant test cases; the size

ranged from two to six classes with a total of 19 to 28 methods.

Table 5.2: Main characteristics of the programs and the dialogs in the case study

Marti
n and
Koss

Pair
 I

Pair
II

Pair
III

Pair
IV

Pair
V

Pair
VI

Pair
VII

Pair
VIII

Average
intermedi
ate pairs

DD for
intermediat
e pairs

Lines of code 215 246 235 222 232 230 240 360 249 251.7 44.6

Number of
class members

36 26 19 25 23 27 26 24 28 24.7 2.8

Number of
classes

3 2 2 3 4 2 6 4 4 3.3 1.4

Number of
domain
concepts
discussed
before coding
started

9 2 4 3 5 6 2 6 2 3.7 1.8

Maximum
number of
design
decisions

43 33 24 32 38 47 45 36 43 37.2 7.7

Number of
programming
concepts the
end of the task

30 33 24 32 37 47 45 36 43 37.1 7.7

Number of
refactorings

16 5 2 9 3 2 3 0 2 3.2 2.7

Number of test
cases

10 10 8 9 10 8 10 10 10 9.2 0.9

Number of
episodes

84 65 45 62 69 67 66 64 60 62.3 7.5

Number
episodes
before coding

3 1 4 1 3 6 1 2 1 2.3 1.8

Time used
(minutes)

X 288 330 146 307 294 295 154 245 257.4 70.3

Figure 5.2 shows the changing numbers of programming concepts in the

knowledge. Table 5.2 summarizes the characteristics of the developed programs

and of their respective dialogues. The final UML class diagrams [56] of the Martin

and Koss’ program and our pairs are shown in Appendix A and Appendix B. Table

5.3 and Table 5.4 show the detailed distribution of four cognitive activities at

www.manaraa.com

69

different Bloom levels from the dialogue of Martin and Koss, and the cumulative

data from the dialogues of all eight intermediate pairs, respectively. Table 5.5 and

Table 5.6 present the data for individual pairs. The detail data for each pair is

shown in Appendix B.

Table 5.3: The distribution of the cognitive activities and Bloom levels
throughout the recorded episodes for Martin and Koss

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0 0 0 0 0
Comprehension 20

23.8%
2

2.4%
5

5.9%
1

1.2%
28

33.3%
Application 9

10.8%
2

2.4%
5

5.9%
2

2.4%
18

21.5%
Analysis 17

20.2%
1

1.2%
5

5.9%
3

3.6%
26

30.9%
Synthesis 11

13.1%
0

0.00%
1

1.2%
0

0.0%
12

14.3%
Evaluation 0 0 0 0 0
Total 57

67.9%
5

6.0%
16

18.9%
6

7.2%
84

100%

Observations of Programming Process

Martin and Koss’ program has a better design and their class members are

much more elegant and readable than the classes produced by intermediate

programmers. There is also a Scorer class separated from the class Game to

calculate the scores for different cases such as spare, strike and normal throws,

while none of the intermediate pairs has similar design. For example, Pair I used

three arrays to store the scores, which turned out to be less efficient. The program

implemented by pair II was hard to read with less meaningful variable names, and

www.manaraa.com

70

other pairs had similar design problems. Experts implemented the program with 36

class members including instance variables and methods, while intermediate

programmers had from 19 to 28 class members. The experts’ program contained

fewer numbers of lines of code (215) than those by intermediate programmer which

ranged from 230 to 360.

Table 5.4: The distribution of the cognitive activities and Bloom levels throughout the
recorded episodes for the eight intermediate programmer pairs

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0 0 0 0 0
Comprehension 120

24.1%
1

0.2%
4

0.8%
2

0.4%
127

25.5%
Application 171

34.3%
1

0.2%
16

3.2%
5

1.0%
193

38.7%
Analysis 77

15.4%
0

0.0%
6

1.2%
3

0.6%
86

17.2%
Synthesis 93

18.6%
0

0.0%
0

0.0%
0

0.0%
93

18.6%
Evaluation 0 0 0 0 0
Total 461

92.4%
2

0.4%
26

5.2%
10

2.0%
499

100%

All intermediate pairs kept every single class they created until the end. One

programmer pair created two classes at the beginning and kept them to the end,

while another pair defined two classes at the beginning and created one new class

later. However, experts created five classes at the beginning but only kept two of

them to the end. A big drop in the numbers of valid design decisions in the Martin

and Koss’ work is indicated in Figure 5.2. This indicates that the expert

programmers more readily abandoned obsolete or inadequate concepts, while the

www.manaraa.com

71

intermediate programmers tried to fit the new design decisions into their previous

design decisions and were reluctant to change them.

Table 5.5: The distribution of the cognitive activities for individual pairs

Pair
 I

Pair
II

Pair
III

Pair
IV

Pair
V

Pair
VI

Pair
VII

Pair
VIII

Average SD

Absorption 57
87.7
%

42
93.3
%

52
83.9
%

65
94.2
%

64
95.5
%

61
92.4
%

63
98.4
%

57
95.0
%

57.6
92.5%

7.7

Denial 0
0%

1
2.2%

1
1.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0.25
0.4%

0.5

Reorganization 5
7.7%

2
4.5%

9
14.5
%

3
4.4%

2
3.0%

3
4.6%

0
0.0%

2
3.3%

3.25
5.3%

2.7

Expulsion 3
4.6%

0
0.0%

0
0.0%

1
1.4%

1
1.5%

2
3.0%

1
1.6%

1
1.7%

1.12
1.8%

1.0

Total 65 45 62 69 67 66 64 60 62.3 7.5

There were several sudden increases of numbers of concepts in the work of

intermediate pairs as shown in Figure 5.2. This was caused by the fact that the

intermediate programmers conducted a discussion of several concepts in one

episode, while the experts referred to one concept at a time.

The discourse in the Martin and Koss dialogue was more coherent and richer

than the dialogues of intermediate pairs since Martin and Koss’ dialogue was edited

from the original recorded data and phrasing is more mature and better articulated.

Intermediate pairs used a lot of references to the source code, which were missing

in the Martin and Koss dialogue.

The intermediate programmers applied refactoring several times at the

beginning by renaming the variables, but they did not use more sophisticated

refactorings like methods or class extraction [57]. Experts refactored the code when

www.manaraa.com

72

the application was close to completion and they performed more advanced

refactorings such as reducing the scope of variables and extracting methods. They

also reduced the number of concepts towards the end of the process as a “final

cleanup”. As a result, their program was more elegant and comprehensible.

However, as indicated by Figure 5.2, none of the intermediate pairs did the same

thing.

Table 5.1 shows that both expert and intermediate programmers created a

similar number of test cases. This indicates the intermediate programmers

understood the test-first technique well and applied it as effectively as did the

experts.

Observations of Cognitive Activities

Table 5.6: The distribution of the Bloom levels for individual pairs

Pair
 I

Pair
II

Pair
 III

Pair
IV

Pair
V

Pair
VI

Pair
VII

Pair
VIII

Average SD

Recognition 0 0 0 0 0 0 0 0 0 0

Comprehension 20
30.7%

14
31.1%

13
21.0%

16
23.2%

16
23.9%

13
19.7%

19
29.7%

15
25.3%

15.7
25.3%

2.6

Application 23
35.4%

20
44.5%

22
35.5%

28
40.6%

26
38.8%

25
37.9%

25
39.1%

25
41.7%

24.3
38.7%

2.5

Analysis 10
15.4%

6
13.3%

15
24.2%

11
15.9%

14
20.9%

14
21.2%

7
10.9%

8
13.3%

10.6
17.2%

3.5

Synthesis 12
18.5%

5
11.1%

12
19.3%

14
20.3%

11
16.4%

14
21.2%

13
20.3%

12
20.0%

11.6
18.8%

2.9

Evaluation 0 0 0 0 0 0 0 0 0 0

Total 65 45 62 69 67 66 64 60 62.2 7.5

All intermediate pairs started the dialog with a discussion of two to six

domain concepts in about two episodes before coding started. In comparison,

www.manaraa.com

73

expert programmers discussed nine domain concepts in three episodes before the

coding started. Intermediate programmers discussed the domain concepts and

programming concepts alternately at the beginning, while experts concentrated the

discussion on the domain concepts. The fact that there are 84 episodes in the

expert’s work as compared to only 45 to 69 episodes in the intermediate

programmers’ work also indicates that the experts tend to switch concepts during

the discussion more frequently than do intermediate programmers.

In the case study, the absorption activity dominated the programming

process from the beginning to the end. This coincides with the fact that the most

common goal of programmers during incremental software development is to create

programming concepts that result in application classes and methods. For the

intermediate programmers, absorption ranged from 84% to 98% of all activities with

an average of 92.4%, while there was 67.87% in the Martin and Koss’ work (see

Table 5.4). This could indicate that compared to experts, the intermediate

programmers have to absorb more knowledge in order to complete the

programming task.

Most absorption activities occur at the lower Bloom levels such as

comprehension and application, particularly for the intermediate programmers, who

spent more than 58% of total activities on absorption at comprehension and

application levels. Experts spent only 34% absorption activity at lower levels of

Bloom taxonomy. Reorganization is the second most common activity because it is

closely related to refactoring, and refactoring was a required part of the

development process. Experts spent 19% of their efforts in reorganization activity,

www.manaraa.com

74

while intermediate programmers had three episodes (5% of total) classified as

reorganization (see Table 5.5).

Only a few episodes were classified as denial or expulsion, indicating that

retraction of concepts from the program and/or rejection of the change requests

seldom happens. Experts did expulsion in 7% of the episodes, pairs II and III did no

expulsion at all, while pair I did expulsion in three episodes. The remaining pairs did

expulsion in only one or two episodes. On average, the intermediate programmers

did expulsion in only 1.8% of the episodes.

Of all episodes, about 64% were classified at the lower Bloom levels

(recognition, comprehension, and application) in the dialogues of intermediate pairs,

as compared to 54.7% of Martin and Koss (see Table 5.6 and Table 5.3). This

indicates that intermediate programmers spent more time in understanding and

applying the knowledge while experts took part of the knowledge as granted. On the

other hand, experts spent more than 45% activities at higher Bloom levels (analysis,

synthesis, and evaluation), compared to only 36% of intermediate programmers. It

seems that experts know better how to analyze the knowledge, how to apply

strategies to use the knowledge and to generate test cases.

These results, together with the comparison of the numbers of absorption

activities, and the numbers of episodes classified at lower or higher levels of Bloom

taxonomy in our replicated case study, coincide with Gilmore’s observations [66]

that novices and intermediates often take longer time to accumulate their

knowledge than experts and even if they have as much knowledge as experts, they

www.manaraa.com

75

may still need a longer time to finish their programming tasks, as they are not

familiar with the strategies to use the knowledge.

No episodes were classified at the top (i.e. evaluation) or at the bottom (i.e.

recognition) of Bloom taxonomy in our case study. This is different from a case

study on program debugging [173] (see next Chapter), where we identified all six

levels of Bloom taxonomy.

Recognition is the pre-requisite for the activities at comprehension and other

higher levels. It is the main reason that it does not explicitly appear in our data. An

additional reason is due to the way we split the dialogue into episodes.

The absence of evaluation episode in the case study may indicate the

differences in the cognitive difficulties among different software engineering

processes. We believe that the programming activity in this case study was quite

simple and the size of the domain and the resulting software were small. During

more complex software engineering tasks (i.e. debugging, reverse engineering,

reengineering, etc.) more hypothesis-driven activities are performed, which would

be classified at the top level in Bloom’s taxonomy (i.e. evaluation), which has been

found in our case study on program debugging [173].

Although many differences exist between the results of the experts and

intermediate programmers, there are some similarities as well, such as the numbers

of test cases created, and the numbers of class members. We believe that these

numbers reflect the nature of the completed application rather than the expertise

and therefore they were the same for both experts and the intermediate

programmers.

www.manaraa.com

76

5.4 Threats to Validity of the Case Study

This section lists threats to the validity of the case study [178], which could

affect the generality and utility of the conclusions.

We used twenty graduate and advanced undergraduate students as

subjects. Although students have a similar technical ability as intermediate level

industry professionals, they might perform the tasks differently. A larger number of

subjects might impact the results.

The problem solved by the programmers was relatively small. All the

programmer pairs spent only two and half to five hours. A more complex problem or

a problem in a different domain may produce different results.

The episodes were separated and classified manually; different authors may

separate and classify episodes differently and a different separation criterion might

yield different results.

Other threats associated with the empirical techniques employed are

discussed in Chapter 8 in more detail.

5.5 Summary of the Case Study

In order to study cognitive process and programmer learning, we developed

an empirical method that includes dialog-based protocol, software screen capturing

and self-directed learning theory. Using this new approach, we conducted a case

www.manaraa.com

77

study of expert and intermediate programmers during incremental software

development in order to validate our novel approach and to study the cognitive

process involved.

Our case study showed that the self-directed learning model can be used to

study the cognitive activities during incremental software development. Our

experience in experiment shows that dialog-based protocol is an exciting approach

and reduces the placebo effect [127] and Hawthorne effect [1]. We also found that

the Martin and Koss exercise is duplicable with different types of programmers. All

intermediate level programmers followed a similar cognitive process with a similar

distribution of the cognitive activities and Bloom levels.

Using incremental software development with the test-first approach,

absorption is the dominant activity behind the process. Reorganization often

occurs, but denial and expulsion occasionally appear. Four out of six of Bloom’s

levels were identified in the case study.

We also found that experts discussed related domain concepts more

extensively before the coding started. The intermediate programmers often

discussed several concepts at the same time, while experts mostly concentrated on

one concept. Experts, unlike intermediates, were also willing to recognize and

reconsider inappropriate design decisions. The experts were more efficient and the

program written had a better design. Experts had more absorption activities at

higher Bloom levels such as analysis and synthesis than intermediates did, while

the latter had most absorption activities occurring at the lower Bloom levels such as

comprehension and application. Experts used more denial, reorganization and

www.manaraa.com

78

expulsion activities than intermediate programmers. Experts took part of knowledge

as granted, knew better how to analyze the knowledge, and how to apply strategies

to use the knowledge, therefore, they spent more time analyzing the knowledge and

generating test cases, as compared to intermediate programmers who spent more

time learning the knowledge instead.

www.manaraa.com

79

CHAPTER 6

CASE STUDY ON PROGRAM DEBUGGING

6.1 Introduction

A bug is an error in a program that causes the program’s behavior to be

inconsistent with the programmer’s or the user’s expectations. It manifests itself

during compile-time or run-time.

Debugging is the process of locating and correcting bugs. These errors can

be made in various stages of software development or evolution, such as

specification, implementation, or debugging of earlier errors [84].

Typical activities in the debugging process include program diagnosis, error

detection, error removal, and testing [179]. Program diagnosis is analogous to a

diagnosis by a doctor. The program displays some “symptoms” and the programmer

needs to find the “disease” which causes the symptoms. The programmer runs and

tests the program to obtain appropriate clues, analyzes the symptoms, and uses

diagnostic knowledge to generate reasonable hypotheses. The hypotheses are then

tested in experiments. The experiments can either support or contradict the

hypotheses. The process is repeated until the programmer narrows down the bug

location by using the isolation strategy (see Figure 6.1). After “treating” the disease

(correcting the bug), and testing the program, the programmer makes sure that the

program is now correct and free from the bug. If not, the process will be repeated

until the bug is completely corrected.

www.manaraa.com

80

In order to make a correct bug diagnosis, programmer must be able to:

 Obtain and understand the meaning of the symptoms of the bugging program

 Identify the appropriate code segments or components involved in the bug

 Identify the process in which the bug is occurring

 Know the most likely cause of the bug

 Evaluate the evidence and select the strategy of debugging

Initialize hypothesis set

Modify hypothesis set

Select a hypothesis

Verify hypothesis

Bug
located
?

No

Yes

Figure 6.1: A debugging process model (modified from [3])

Program debugging is a common part of software processes. It is an

accepted fact that software engineering processes require a significant amount of

time for debugging and infected program. In turn, the debugging contains program

www.manaraa.com

81

comprehension and testing as the central tasks [22] [137]. Therefore, program

debugging is a cognitive-oriented process, and studying the cognitive activities

involved becomes very important.

6.2 Case Study Design

In order to understand the cognitive activities involved in debugging process,

we conducted a case study [178]. The case study design is based on the following

hypothesis – “The new learning model based on constructivist learning and Bloom’s

Taxonomy is applicable for studying the cognitive activities in program debugging”,

as verified by the case study [172] [173].

In order to validate the hypothesis, we chose one previous case study of a

system failure in a COTS (Commercial-Off-the-Shelf) Based Information

System[75]. The additional details are in [75].

COTS systems consist of individual components that may be developed by

different companies. The probability of failure increases due to integration of

individual components. Therefore, debugging a COTS system requires not only the

diagnostic skills, but also the knowledge of underlying component technologies.

The case study deals with a system that consists of a COTS Web server and

a relational database management system, each provided by a separate vendor.

The application was expected to be used by multiple customers, but a serious

problem was reported when it was deployed for the first time. The symptoms of the

www.manaraa.com

82

problem were that the system was either too slow or was not responding at all to

user requests. The purpose of the case study was to find and fix the bug.

The programmer was provided with the symptoms “system not responding or

too slow”. Based on his experience with the architecture of similar systems, the

programmer considered several possible causes. He decided that the most likely

cause is the slow database query that slows down access to the web server. The

slow web server then blocks access to the site.

Based on this assumption, the programmer used a “browser skeleton” to

validate this hypothesis. The browser skeleton is a test harness in which a program

simulates customers connecting to the web server. The average response time was

recorded after a browser skeleton was launched. Then the actual web browser was

launched to connect to the server and the response time of the server was

recorded. This turned out to be 100 times longer than the response time for the

browser skeleton. This test was repeated several times to make sure that the

results were stable and repeatable. The test results supported the hypothesis that

queries to the database slow down access to the web server. The programmer had

narrowed down the cause of the problem, but further work is needed.

The next hypothesis was that the web server could not spawn child

processes to handle customer requests. Based on this assumption, another test

was conducted using the same test harness to observe the state of all processes. If

the hypothesis were true, the number of processes would not increase after a

certain period of time. However, the result did show that some new processes were

spawned, and the overall number of processes increased. Therefore, the second

www.manaraa.com

83

hypothesis was not supported by the evidence. Nonetheless, a useful observation

was obtained: One of the child processes was accumulating CPU time and others

were not. A further investigation was conducted to see what each child was doing

during the browser request process. It was found that only one child works properly

and other children tried to set a lock on a file that was already locked by another

process. Therefore, there was a block or race condition that put other child

processes into an infinite loop and blocked their execution.

After reading the Unix manual and going through documentation and

configuration settings, the programmer noticed that the web server uses system

calls getcontext and setcontext, which are used in user-level threaded applications.

The programmer knew that the web server was actually a multi-threaded application

with user-level threads and found that the child process was not threading as

expected. Therefore a further hypothesis was made that the actual COTS server

agent was not multi-threaded and forced the web server to become blocked.

The server agent provides communication between the web server and the

relational database management system. The present server agent provided by the

database vendor is used with the www server-side API, although it also supports the

Common Gateway Interface (CGI). If the above hypothesis is true, as CGI supports

multiple threading, then using the CGI version of the same agent instead of www

server-side API version of the server agent would be the right solution. A new test

was proposed after the www server-side API version of the server agent had been

replaced with CGI version. The test harness and actual web browser were used

again. The result demonstrated that the web server was no longer blocked after the

www.manaraa.com

84

replacement. The problem was diagnosed, a replacement was done and a re-test

was conducted. Therefore, the debugging was successful and the bug was fixed.

We separated and classified the debugging process into twenty-eight

episodes according to such a rule that, if programmers referred different concepts,

a new episode was assigned (see Appendix C). The detailed description of each

episode is shown in Appendix C. Then we used self-directed learning theory as the

code scheme to analyze the data as described in Chapter 4.

6.3 Case Study Result

Table 6.1 lists the distribution of the cognitive activities and Bloom' levels in

this case study. Based on the categorization, the programmer’s actions reflect all

levels of Bloom’s hierarchy, starting with recognition (or knowledge) and

comprehension, through application and analysis, and finally synthesis and

evaluation.

In terms of cognitive activities, the most frequent activity is absorption which

takes more than 67% of total activities during program debugging, since

programmers try to understand program in order to perform debugging. Absorption

is distributed at various Bloom levels, but there are more cases at comprehension

level which takes 25% of total activities. There are also some representatives for

reorganization distributed on comprehension, application, synthesis and evaluation

Bloom’s levels. No denial was found in this case study. Expulsion only occurs at the

recognition (or knowledge) level.

www.manaraa.com

85

Activities at the comprehension level occurred with the most frequency,

taking up to 28.56% of total activities. The distributions of activities in application,

analysis, synthesis and evaluation levels are similar.

Knowledge level cognition is the prerequisite for program debugging. A

programmer must be able to recognize the multi-tier architecture of web application,

in order to identify the meaning of the output, and to define the test harness. If the

programmer does not have this knowledge, it is not possible to perform debugging.

Armed with this knowledge, the programmer can move to the next taxonomy

level – comprehension. The programmer should be able to comprehend how the

client-server works, to explain how SQL queries work, to illustrate how the test

harness replaces the web server, and to interpret the race condition for two or more

threads.

The next taxonomy level is application. By applying the knowledge of three-

tier architecture, the programmer attempts to solve the problem by assuming that it

is the slow response to SQL query. The programmer also applies the knowledge of

how spawning child processes handle each web request.

After the knowledge has been applied, the programmer analyzes the

relationships of different pieces of information. For example, after obtaining the first

test result and observing the amount of time used for each response, the

programmer contrasts the response time with the actual web browser and the

response time with the browser skeleton, and finds that the first is 100 times longer.

During debugging, there are several examples of synthesis. The programmer

proposes that the hypothesis “slow database query slows down the access to the

www.manaraa.com

86

web server”, then “the web server can not spawn child process”, then later “not all

child processes spawned were handling inbound requests” and finally “the COTS

server agent was not multi-threaded and forced the web server to block”. All these

hypotheses are based on a synthesis of all the available information.

Table 6.1: The distributions of the cognitive activities and Bloom’s levels in the case
study

Assimilation Accommodation

Absorption Denial Reorganization Expulsion

Total

Knowledge 1
3.6%

0
0%

0
0%

1
3.6%

2
7.1%

Comprehension 7
25%

0
0%

1
3.6%

0
0%

8
28.6%

Application 4
14.3%

0
0%

1
3.6%

0
0%

5
17.9%

Analysis 4
14.3%

0
0%

0
0%

0
0%

4
14.3%

Synthesis 1
3.6%

0
0%

4
14.3%

0
0%

5
17.9%

Evaluation 2
7.1%

0
0%

2
7.1%

0
0%

4
14.2%

Total 19
67.8%

0
0%

8
28.6%

1
3.6%

28
100%

On the evaluation level, the programmer validates whether the hypothesis

can correctly explain the bug. For example, the programmer validates the

hypothesis “the COTS server agent was not multi-threaded and forced the web

server to block”. In a similar vein, the programmer rejects the second hypothesis

“web server could not spawn child processes to handle customer request”.

In order to show it more clearly, we extract some examples for each Bloom’s

level and list them in Table 6.2. In program debugging, knowledge and

www.manaraa.com

87

comprehension are prerequisites, as the programmer has obtained them prior to

debugging the program. The programmer was familiar with programming

languages, technologies, and client-server architecture, and was able to obtain the

information such as program output. The programmer moved from one level to

another in increasing order of complexity. Without establishing a firm footing, it

would be difficult to proceed to the next level of cognition.

Table 6.2: Examples at each cognitive level in the case study

Level Case study behaviors

Knowledge Structure of the program, recognition of bug symptoms

Comprehension Understanding how client-server and SQL queries work

Application Slow response to SQL query causes slow response of the system and
suggests that no child processes are created

Analysis One child process blocks other child processes or the web server does not
create multiple processes, which forces no system response

Synthesis Slow response from web server means slow access to SQL query, and one
child process does not handle multiple request

Evaluation Checking if the original diagnosis explains the entire discovery, Any other
possibilities? After replacing the server agent Retest the system with test
harness and actual browser

Program debugging might be a complicated process, one which requires the

programmer to use all six Bloom’s levels. Experts have already had the knowledge

and the ability for comprehension; therefore, their efforts mainly concentrate on

application, analysis, synthesis and evaluation. We speculate that this is the cause

of the large gap between the novices and experts, and this coincides with the work

of von Mayrhauser and Vans (1997) [159], who found that programmers who have

www.manaraa.com

88

more domain knowledge would perform program comprehension at a higher-level

abstraction. Taking examples from our case study, we can find that novices might

have trouble identifying the cause of the slow response to SQL query, whereas

experts immediately recognize it as the problem in creating child process. Once

they have accumulated enough knowledge, novice programmers will move more

easily to higher levels such as analysis and synthesis.

6.4 Threats to the Case Study

This case study has the following limitations. The case study was based on

a previous case study. The description of the case study might have been modified

for publication. If the data was obtained from think-aloud protocol, the results might

be slightly different. The problem solved in the case study is a small web

application. A more complex problem or problems in different domains may produce

different results.

6.5 Summary of the Case Study

We used our self-directed learning model to conduct a case study on the

program debugging where a large amount of time was spent on program

comprehension. The case study result showed that during program debugging,

absorption is the driving activity that occurs most frequently and at all six learning

levels. Reorganization also appears. Expulsion only happens at recognition

www.manaraa.com

89

(knowledge) level. No denial activity is found in this case study. All six Bloom’s

levels have been identified in the case study. Activities at comprehension level take

the most with 28.56% of total activities. The distribution of activities in application,

analysis, synthesis and evaluation is similar. During program debugging,

programmers apply the four cognitive activities at six Bloom’ learning levels in order

to understand the program and to locate the bug and to fix it. Therefore, the case

study has validated the hypotheses stated in the case study design.

www.manaraa.com

90

CHAPTER 7

CASE STUDY ON SOFTWARE EVOLUTION

7.1 Introduction

7.1.1 Software Evolution

Software evolution refers to the maintenance tasks, one of the important

stages of software lifecycle [116]. During software evolution, programmers add

new functionality into the existing system of iterated tasks. This process is called

the incremental change. Each increment change is based on a change

request[118].

Lehman (1998) [88] emphasized that the software evolution becomes

very difficult or impossible when software increases its size and that clear steps

should be taken in order to keep system stable. Rajlich (2000, 2004) [116] [118]

identified three steps for achieving incremental change: concept location, impact

analysis and change propagation. Concept location is the first part of software

maintenance task and it reconstructs mapping between the application domain

and implementation [28]. The purpose is to find the relevant concepts in the

code. Impact analysis is to determine the sets of classes that incremental

change may affect. Change propagation refers to the process of a programmer

changing a class and then visiting all classes in interaction with the changed

class in order to investigate whether or not they also need to be changed [116].

www.manaraa.com

91

While previous papers reported experience with waterfall development,

software evolution and maintenance were listed among the topics of the body of

software engineering knowledge (SEEK) proposed by IEEE-CS and ACM [80].

This is the basis for the education of software engineers. Since software

maintenance takes a substantial part of the software costs and most software

engineers are actually maintaining the existing system, it is beneficial for

students to work on evolution and maintenance projects. Pair programming

described in the section 7.2 exclusively deals with software evolution or

maintenance.

7.1.2 Project in Software Engineering Classes

Software engineering is an important part of computer science curriculum

at both undergraduate and graduate levels. Undergraduate classes often deal

with the fundamentals of software development which include such tasks as the

waterfall development model, whilst graduate level offers advanced topics

including software evolution and maintenance.

Software engineering in industry is a process of collaboration because

most software is developed by a team. That is the reason why there is a team

project component in the software engineering classes. According to [20],

projects can allow student to learn to develop complex systems, to experience

simulated real-world development environment, to get a chance to learn from

www.manaraa.com

92

each other, to share their skills and knowledge, and to learn how to handle

scheduling and other problems.

The traditional way of organizing the project in an undergraduate software

engineering class is to form groups with 4-6 students and to use the waterfall

software development life cycle to develop a software prototype [68], as does

the graduate software engineering class, which requires normally a team work in

a project.

Sommervill (1996) [143] pointed out the critical goals of software

engineering courses: to make students practice “programming in the large”, to

let them practice concepts learned in classroom, and to learn how to use

software tools. Peslak et al. (2004) [113] proposed to use collaborative methods

to simulate the industrial environment.

According to Gnatz (2002) [68], the course projects using a group larger

than 4 people often fail as a result of issues such as scheduling, and personal

conflicts. The failure of projects mainly comes from inefficient exchange of

information since too many people in a group sometimes cause substantial

communication overhead. In fact, the projects are often completed by a few

advanced students in the group, and the rest of the team learns less [68].

7.1.3 Pair Programming in Classroom Projects

As mentioned earlier, Pair Programming (PP), one of the important

practices of eXtreme Programming (XP), is a collaborative programming [10].

www.manaraa.com

93

Pair programming has been used in industry and promising results have been

reported. Nosek (1998) [105] studied 15 professional programmers in both pair

programming and individual programming situations and found that all pairs

outperformed the individuals in terms of quality and time spent. William

(2001)[169] did a survey of professional programmers and found that 100%

were more confident in their solutions when using pair programming. However,

recent studies demonstrate that pair programming should not be used for either

very large systems [150] or trivial problems [10] [101].

Several researchers used pair programming in undergraduate computer

science courses and found it to be beneficial to students. William et al.

(2000)[170] performed a case study in an introductory computer science course

with 41 undergraduate students who formed two groups: one that worked in

pairs and the other one that worked individually. The students were asked to

complete four programming assignments. They found that paired students

completed assignments faster and with higher quality. The defects of their

programs were 15% lower and they also appeared to learn faster than the

students who worked on their own [170].

Hedin et al. (2003) [73] used pair programming to teach a second year

software engineering class that had 107 students and reported a very positive

result McDowell et al. (2002) [96] found that students who worked in pairs

implemented better programs and performed significantly better in exams than

those worked individually. They also noticed that fewer students in pair

programming dropped out of the course than those working by themselves.

www.manaraa.com

94

Williams et al. (2003) [171] conducted a mass case study in introductory

programming courses that involved over 1200 students. It was found that paired

students were more likely to complete the introductory course with a grade C or

better, and their exam and project scores were better than those who worked

individually.

The learning process involved in pair programming has been recently

closely studied. Williams and Upchurch (2001) [169] conducted a case study in

order to understand how teaching and learning are enhanced by pair

programming. They found that the students communicated with each other more

effectively, appeared to learn faster, and were happier. The positive effect of

pair programming on knowledge sharing during program design was also

noticed by others [27].

The benefits of pair rotation have also been observed [146] [27]. The

researchers found that students can learn from several partners, while the

teachers have to deal with dysfunctional pairs.

However some disadvantages were also reported. Nawrocki and

Wokciechowski (2001) [102] claimed that pairs spend nearly twice as much total

time than individual programmers. The case study conducted by Gallis et al.

(2002) [61] has shown that pair programming is inefficient for trivial

programming tasks. The undergraduate students only have basic programming

knowledge and they can not conduct pair programming on complex projects.

Schneider and Johnston (2003) [131] noticed that due to the differences

of experience between the two programmers in a pair, the stronger one did most

www.manaraa.com

95

of the job and the weaker one often failed to learn, something that often

happens in undergraduate classes. Schneider and Johnston also observed that

in order to fully understand the important elements in software development as

well as the consequences of agile practices, students must reach certain level of

maturity. Otherwise, agile practices such as pair programming might be

misused [61] [131].

Pair programming was also used in graduate classes, although not as

frequently. Muller and Tichy (2001) [101] performed a case study using pair

programming with graduate students who were required to take a practical

training course. Twelve participants completed three simple tasks and one

project in pairs. They found it easy to adapt to the pair programming in graduate

classes. However, some students commented that it was a waste of time to

watch their partners dealing with trivial programming problems.

Stotts et al. (2003) [148] did a case study with graduate students and

compared the effects of pair programming in a distributed environment and

found such an approach both feasible and effective. However, pair programming

has rarely been used in graduate software engineering course projects.

7.2 Case Study Design

In order to investigate the effects of pair programming in a graduate

software engineering course and in software evolution, and the difference

between pair programming and traditional individual programming in that, we

www.manaraa.com

96

designed a case study where the participants worked either in pairs or

individually and made incremental changes to an existing large open source

program. That allowed us to make a comparison between the pair programming

and traditional individual programming. We also conducted a survey on pair

programming [175].

In our design, we were led by our belief that the graduate students have

sufficient required knowledge of programming for pair programming, and also

have an experience in cooperation which lessens the possibility of failure. We

wanted to see how well the graduate students could actually perform in graduate

software engineering course projects when using pair programming technique

and how effective it would be to integrate the software evolution in open source

software project.

The experiment applies a single-factor design [29]. The controlled

independent variable is whether the experimental subjects use pair

programming or use traditional individual programming [62]. Each subject of

both groups solves the same problems and works under the same or similar

conditions. The dependent variables for each subject are 1) the total time taken

for each change request 2) the lines of code for each change request written by

programmers 3) the number of classes they made change necessary 4) the

number of classes they made change unnecessary.

The case study design is based on the null hypotheses later falsified by

the case study: “Pair programming is not useful for graduate software

engineering class” and “Pair programming cannot be conducted with software

www.manaraa.com

97

evolution projects”. The rest of this section describes various facets of the case

study design.

7.2.1 Participants

Six graduate students from the Wayne Sate University Department of

Computer Science participated in the study. It was conducted through their

course project. The case study lasted for one entire semester. The students

were experienced in programming in C, Java, or C++, but they had never before

performed pair programming, nor did they have experience in software

evolution. The programming experience of all the six students is shown in Table

7.1. In the pair group, there are 3 Master students and one Ph.D. student. Two

male students and two female students formed two pairs respectively. Since all

of them had similar experience in OO programming and had never used pair

programming technique before, there is no obvious bias in such pairing. Two

master students were in the individual group, one male and one female.

Table 7.1: Programmers’ experience

Pair 1
(A)

Pair 1
(B)

Pair 2
(A)

Pair 2
 (B)

Single
1

Single
2

Years using Java language 3 1 2 5 3 2
Years using C++ language 5 4 1 2 2 2
Other languages known Matla

b
C, VB C Perl,

Clips
 C C

Total lines of code having written
in java

>1000 500 <1000 2000 -
3000

2000 >1000

lines of biggest programs having
previously studied

>3,000 >1,000 5,000 >1,000 1000 1500

www.manaraa.com

98

7.2.2 Material

The material for this case study is an open source project called JAdvisor

[144]. JAdvisor is a class scheduler, course planner, and course search program

written in Java. JAdvisor allows college students to view their schedules

graphically and to create an optimal schedule. We selected this open-source

application since it has reasonably big size with 31 classes, and satisfies Beck’s

criterion that the tasks for pair programming should take at least several hours

[10]. JAdvisor application was also new to all the programmers.

The students were working on six distinct change requests that varied in

difficulty. Here are the change requests:

Change request 1: Color coding schedule. JAdvisor allows the user to

input block time to the schedule; however, there is no specific drop down menu

to do so and each classification shows up with same color and is therefore, hard

to recognize. We are to add a classification drop down box to the block time

menu. It should display various classifications like study time, food break time,

homework time, etc., with different color blocks on the schedule. Via this way

the user can easily identify their allocated times.

Change request 2: XML output. Current version of JAdvisor does not

support XML output for class scheduling, but we need it to output the schedule of

the user. The XML structure must be clear and readable. Once this structure is

documented the user should be able to save their output with the XML format,

www.manaraa.com

99

and also the program should be able to read the XML format files into both the

planner and schedule tabs.

Change request 3: Planner wizard. JAdvisor has no planner wizard for the

required courses needed for a degree. We are going to create a planner wizard

that allows the user to enter all courses necessary for his or her degree. The

information should be saved in XML format whenever the user chooses to do so.

These courses should be shown in the planner tab on the right hand side. If a

course has been taken, the course name should appear in red color and the user

should not be allowed to select it.

Change request 4: Planner duplication. The planner is supposed to allow

the user to plan all four years of the curriculum, but it allows for duplicates.

Since students usually do not repeat their courses, JAdvisor should ask the user

to overwrite if he or she does add a duplicate course either in the same

semester or in future semesters.

Change request 5: Pop-up dialog. The planner does not allow the user to

select a course and then to display its information. We are going to add a pop-up

dialog window which allows the user to click on a course in the current term and

then a pop-up dialog should be able to display the course information.

Change request 6: HTML input. The current version of JAdvisor allows

the user to output HTML, but it cannot read HTML files. The program should be

able to read HTML files and fill in the scheduler as if they were saved.

7.2.3 Procedures

www.manaraa.com

100

Prior to the case study, all subjects were given lectures on basic concepts

of pair programming and incremental change such as concept location, change

propagation and impact analysis. They were taught how to do incremental

change and how to conduct pair programming. They were also provided with

JAdvisor website and the change requests.

The author acted as a mentor who monitored the programming process

for all the pairs. The programmers were required to document the time they

used for their tasks.

One pair and one individual programmer worked on change requests 1, 2

and 3, and the other pair and the other individual programmer worked on

change requests 4, 5 and 6. They worked on those change requests in

sequence.

After the case study was completed, programmer pairs and individual

programmers were asked to write a report on the process with screen shots.

Based on the observation, the program written by programmers, and the reports,

we conduct analysis.

7.3 Case Study Result

In this section, we summarize the results of experiments and student

survey on pair programming.

www.manaraa.com

101

7.3.1 Case Study Results

All six participants have completed their work. In Table 7.2, we presented

the time the participants spent on each change request. Please note that the

times listed in Table 7.2 are the duration that the pairs and individuals spent on

the tasks. Therefore, the “total time cost” for a pair is double the time indicated.

In all cases, it is bigger than the total time cost spent by individuals who worked

on the same tasks. On the other hand, programmer pairs worked on the tasks

for a significantly shorter duration than individual programmers. This indicates

the pairing can reduce the time of software evolution, which is consistent with

the result for pair programming in software development reported by [34, 170].

However it may increase the cost of the development as the “total time

investment” for two programmers is higher.

Table 7.2: Comparison of time (hours) used by pair and individual
programmers

Subjects Tasks completed in
order

Pairs Individuals

Change 1 12 15
Change 2 9 12

Pair 1/ Individual 1

Change 3 9 15
Change 4 13 15
Change 5 11 15

Pair 2/ individual2

Change 6 7 14

Change requests 1, 2 and 3 were done by one pair and change requests

4, 5 and 6 were done by the second pair in sequence. From Table 7.2, we can

see that the time spent by the pairs on the change requests became shorter as

www.manaraa.com

102

the process moved along; however, this phenomenon is not shown by the work

of the individuals. This indicates that the learning process is faster for the pairs

than for the individuals. This result agrees with the results claimed by Williams et

al. (2000) [170], who stated that pairing forces the two programmers to think

aloud, making their comprehension strategy explicit, and thus, enhanced the

learning process.

Table 7.3: Change request results for pairs

Change
requests

Pairs

Lines of code Numbers of classes
changed

Numbers of classes
changed unnecessary

1 110 3 1
2 87 3 0
3 56 1 0
4 64 4 0
5 82 3 0
6 67 3 0
Total 466 17 1

Table 7.4: Change request results for individuals

Change
requests

Individuals

Lines of code Numbers of classes
changed necessary

Numbers of classes
changed unnecessary

1 125 3 0
2 104 3 0
3 86 1 2
4 102 3 1
5 78 3 0
6 75 2 0
Total 570 15 3

Tables 7.3 and 7.4 show the numbers of lines of code added for each

change request, the numbers of classes which have been correctly changed,

www.manaraa.com

103

and the numbers of classes which should not be changed but were modified by

the programmer pairs or individuals. For six change requests, pair programmers

added a total of 466 lines of code, but there are 570 lines of code written by

individual programmers. The pair programmers also did most of the job correctly

since they completed more required change propagations than individual

programmers. The individual programmers failed to find 3 change propagations,

and did unnecessary change in 3 classes. But the pairs only failed to find one

change propagation out of total eighteen. Also the programs written by pairs

have more meaningful variable names. This proves that with the help from the

partner, programmer pairs are able to write higher quality code, supporting the

same finding by [170].

Table 7.5: Result of quantitative questions from the survey for pairs

Questions Lowest
(0.0)

Highest
(5.0)

Answer
(average)

How effective do you think pair
programming was for the project?

Not effective Very effective 4.00

Did you and your partner contribute
equally to the project?

Very unequal Equal 3.20

What is your rating of your
performance?

Did very
little

Did most of
work

3.8

What is your rating of your
partner’s performance?

Did very
little

Did most of
work

3..9

Do you think you learned more or
less than you would have if you had
worked on your own?

Much less Much more 3..8

How do you think the time that you
personally spent on this project
compares to the time it would have
taken you to do it on your own?

Pairs much
slower

Pairs much
faster

4.0

Would you like to use pair
programming during your future
graduate course project?

Not at all Very like 4.6

www.manaraa.com

104

7.3.2 Survey Results

A survey on pair programming was conducted with the survey questions

listed in Table 7.5 through Table 7.7.

In general, students thought that pair programming is an effective way to

complete the course project. All students were satisfied with their own

performance as well as that of their partners; however, they thought the

contributions from the two people in the pair were different, which is consistent

with the two roles in the pair: One is the driver who controls the keyboard and

the other is an observer performing code review in helping the driver to make

decisions [10]. It seems that a role rotation is needed in order to further promote

learning between the two programmers in the pair as mentioned in [146]. The

students also believed that pair programming can actually save their time in

completing the projects. This corresponds to the shorter project durations that

were indicated in Table 7.2. The two pairs reported that they enjoyed the pair

programming technique more than them programming alone and are willing to

apply it in their future projects. It seems that the programmer pairs had higher

motivation to finish the tasks than did individual programmers, also contributing

to the time difference on the tasks by the pairs.

The two individuals who participated in the case study were also

conducted a survey via email. The questions and results are shown in Table 7.7.

It seems that the two individuals expected positive effects in applying pair

www.manaraa.com

105

programming in the course projects and they were also interested in using it in

the near future.

Table 7.6: Answers of qualitative questions from the survey for pairs

Questions Answers
Do you feel like you have
learned anything just by
reading your partner’s
code?

 Yes, I think so
 Yes, I agree
 No, I do not feel that way
 No, I did not learn more

What was the biggest
problem you have had to
overcome as a paired
programmer?

 No problem
 I do not think there is a problem
 The pair should know how to deal with different
options
 Partners should have similar knowledge

What do you think is the
biggest concern in pair
programming?

 Matching of the two programmers
 Having agreement
 Not being ready for big problem
 Time conflict

What are the advantages
of pair programming?

 Pair works faster
 Pair explores more design and implementation options
 Pair has more confidence
 Pair can share ideas

Based on the case study and survey results, it seems that pair

programming and the large application like JAdvisor can work as graduate

software engineering projects since the paired programmers produced higher

quality results within shorter time, compared with those working alone. The

programming ability of the pairs was better than that of individuals based on

Tables 7.2, 7.3, and 7.4.

Using pair programming, learning has been enhanced greatly, since the

knowledge is constantly exchanged between partners, including those concepts

learned in the classroom, tool usage tips, programming language, design skill,

www.manaraa.com

106

and debugging techniques. Pair programming affects learning and motivation,

facts that have been demonstrated by the result of the survey.

Table 7.7: Answers of qualitative questions from the survey from individuals

Questions Answers
Do you think it would be more efficient if
you would have worked with
a partner?

 Yes, I think it would
 Yes, I agree, but not sure

Do you think you learn more if you would
have worked with a partner than when
you worked alone?

 Yes
 Yes

How do you think the time that you would
spend with a partner compared to the
time you spent on your own?

 It depends on the partner. If the team was
on the same level, it would be more efficient
and require lesser time. But if the partner was
learning then I don't see any advantage.
 Possibly we would use less time by
working as pair

How do you think the pair programming
impacts a quality of the program?

 Better than with a single person project
 It should have higher quality

If you are allowed to choose in future
course projects, would you prefer to work
with
a partner or work alone?

 With a partner
 I love to pair with a friend to see the results

Nevertheless, using the pair programming concept in graduate class

projects certainly has some obstacles. The first one is how to pair students.

Letting students themselves decide who to pair with is often a good option that

can minimize incompatibility. The second issue is the types of programming

problems for the projects. Theoretically, any program problem with medium size

is suitable for pair programming. However, some problems may motivate

students to learn more than others. The third obstacle is the scheduling

problem. If the two students have scheduling problems, they cannot work on the

project together.

www.manaraa.com

107

7.4 Threats to the Case Study

Several issues affected our results and limit our observations of the case

study. These stem from the nature of any case study, and from our general

approach.

Although the Java program JAdvisor is an open source project, it is not

representative of programs as a whole. It is not a very large program and in no

way is able to represent all OO programs. Much larger size of programs might

have slightly different results.

The change requests given were open to the interpretation of the

participants. While all questions pertaining to the requirements were answered,

several students felt that some of them were not required or were loosely

coupled to the more important change. One example is the implementation of

the link between the scheduler and planner components without a drop down

box to determine which semester to add the course to. This could also be the

result of a poor assumption. The JAdvisor program on its first execution asks for

the current semester, which validates the assumption. However, in future

executions, the user can load saved data, which will change the current

semester. Therefore the assumption does not hold for consecutive executions of

the system.

7.5 Summary of the Case Study

www.manaraa.com

108

Pair programming increasingly attracts attention not only in the industry,

but also of academia. Pair programming has been reported to have benefits in

software development and in undergraduate classroom.

Because of their maturity, a good command of programming knowledge,

experience in cooperation, and the moderate size of graduate software

engineering class projects, graduate students are the ideal candidates to use

pair programming in their classroom projects as well.

We performed a case study on pair programming in software evolution at

graduate software engineering class with six graduate students, who worked as

either pairs or individuals. All the subjects worked on change requests on open

source software: JAdvisor.

The case study showed that programmer pairs consume shorter time, but

at an increased cost because of the extra labor involved. Programmer pairs

completed the tasks with higher quality work than those done by individuals

since they only missed one change propagation out of eighteen in total, but

individual programmers missed three. They have also written higher quality

code, such as with less lines of code and more meaningful variable names.

According to the survey, all students are satisfied with the performance by

themselves and their partners and they are willing to use pair programming in

the future. Based on the case study and survey results, it seems that it is a

good idea to develop graduate software engineering course project with pair

programming and pair programming can be applied to software evolution tasks

www.manaraa.com

109

which falsifies the hypothesis. Using pair programming technique to organize the

projects not only forces students to learn, but also gives them some fun.

www.manaraa.com

110

CHAPTER 8

EVALUATION OF DIALOG-BASED PROTOCOL, SOFTWARE SCREEN-
CAPTURING AND SELF-DIRECTED LEARNING THEORY

Since we used a novel empirical technique of dialog based protocol,

software screen capturing and self-direct learning theory to conduct our empirical

study, in this section we summarize our experience with that technique and

evaluate our novel empirical approach.

8.1 Dialog-Based Protocol

According to our observation, when two programmers in a pair were well

matched, they worked efficiently and conducted a revealing dialog. However in

our case study on incremental software development, we ran into some

difficulties which might indicate the issues and limitations of the dialog-based

protocol.

One pair did not use the dialog to communicate, and only one

programmer spoke all the time. That programmer wrote the program alone and

explained his thoughts to the other member. His partner simply said “yes” or

“right” during the process, and it looked as if this pair had simply applied the

think-aloud protocol. We considered these data to be invalid and did not include

them in the final analysis of that case study.

www.manaraa.com

111

One pair did not follow the directions to implement an object-oriented

program and only created one class for the whole program. Again we considered

the resulting data to be invalid.

One pair had experienced great difficulty working together although they

did manage to complete the task. There were a lot of arguments and a non-task-

related discussion. Those arguments affected their motivation and impacted the

results. We still considered the data to be valid after we removed the irrelevant

parts of the dialog.

We often observed cases where one subject did not understand the

partner’s idea and the partner tried to illustrate and explain it to the partner in

more detail. Whenever an ambiguity or misunderstanding arose, the other

partner would force the subject to correct it or make it clear. Based on this

observation we are convinced that the data collected in dialog-based protocol

are more complete and more correct than in think-aloud protocol, which

confirmed our earlier anticipation.

Since the mentor was simply an observer, the communication between

the mentor and the subjects had been greatly reduced. Even when subjects had

a technical question, they did not have to ask the mentor for help since their

partner was often able to solve the problem. During the case study, the mentor

was only asked questions at the beginning of the process when several pairs

had problems with the use of the compiler. There was no communication at all

between the mentor and three pairs. Therefore, the placebo effect was greatly

reduced.

www.manaraa.com

112

The presence of the mentor in the dialog-based protocol was not

necessary, particularly when subjects fully understand program requirements

and are familiar with the tools. We observed that programmer pairs talked quite

naturally and frankly and some of them often joked, which indicated that they

totally forgot that they were conducting the experiment. Therefore, the

experiment was conducted in more natural environment and the Hawthorne

effect was minimized.

In general, our observations during the case study directly supported the

anticipated comparisons between think-aloud and dialog-based protocols shown

in Table 2.1. We concluded that dialog-based protocol is an effective method for

collecting information on the programmers’ cognitive activities during software

engineering processes, although there are still some open issues, such as how

to form the pairs.

8.2 Software Screen-Capturing

In our case study on incremental software development and software

evolution, we used videotaping for the first two pairs and then switched to

software screen-capturing for the rest. Videotaping provided more data, but

these additional data did not play any significant role in our case study.

Recording quality with a video camera turned out to be lower than using a

software screen-capturing. The camera had to be located a certain distance from

the subjects in order to capture the whole computer screen, but that increased

www.manaraa.com

113

the external noise in the recordings. Some screen data were missing since the

camera was located behind the subjects and when subjects moved, their bodies

hid parts of the screen. There were no such problems with software screen-

capturing.

We also found that screen-capturing reduced the Hawthorne effect. One

pair was clearly camera shy since they occasionally asked if the taping has been

stopped, indicating a possibility of the Hawthorne effect. We found no evidence

of similar awareness during the software screen-capturing.

Transcription of the videotape took much more time than using software

screen-capturing. There were several procedures and particular software we had

to use in order to transcribe the digital tapes into media files. Playing back the

tapes was more time-consuming and complex than playing back media files.

Videotaping needed a detailed time schedule in which two programmers

in the pair, the mentor, and the video-camera all had to be available at the same

time.

The media files captured by software did not always display continuous

scenes on the screen due to the delays of capturing. However, no significant

data was lost in this way, and we did not have any difficulties transcribing media

files into dialogs.

8.3 Code Scheme: Self-Directed Learning Theory

www.manaraa.com

114

Through the case study, we found that the self-directed learning model

provides a clear and easy-to-use coding scheme in studying the cognitive

activities during software engineering processes. It can be used to classify the

cognitive activities and learning levels used by programmers during incremental

software development and program debugging, and thus to distinguish experts

and novices.

 Similar to other coding schemes, the self-directed learning theory leaves

room for disagreements. A coding scheme uses a limited selection of verbs for

the four cognitive activities and six Bloom learning levels (Tables 4.1 and 2.2).

The verbs for the Bloom levels have been developed and validated through

many years of use, but still some verbs appear at more than one Bloom levels,

creating an ambiguous classification process. The verbs for cognitive activities in

Table 4.1 were used in our case studied for the first time and might not be

complete. About 10-15% of episodes in recorded dialogs did not contain those

verbs or even their synonyms. Therefore, not only the verbs in the episode, but

also the actual contents of the episode were considered during the classification.

www.manaraa.com

115

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Although we have had a conclusion for each chapter, this part will serve

as an overall conclusion of the thesis that corresponds to the general objectives.

We describe the conclusions under the categories of dialog-based protocol, self-

directed learning theory, and cognitive process during incremental software

development, cognitive process during program debugging, and pair

programming in software evolution project. Each of them will be presented

respectively in sections 9.1, 9.2, 9.3, 9.4 and 9.5. After that, in Section 9.6, we

will elaborate the future work that can extend the subjects of this thesis.

9.1 Dialog-Based Protocol

Based on the idea of pair programming, we proposed a dialog-based

protocol, which is an alternative to common think-aloud protocol. Through the

case study, we found that we can collect more complete and accurate data

through dialog-based protocol. Dialog-based protocol can also reduce the

Hawthorne and placebo effect because it creates a more nature dialog

environment and reduces the communication between the mentor and subjects.

Therefore, it is considered as an effective method for collecting information on

the programmers’ cognitive activities during software engineering processes.

9.2 Self-Directed Learning Theory

www.manaraa.com

116

Based on the constructivist learning theory, we classified the cognitive

process into four cognitive activities: absorption, reorganization, denial and

expulsion. We also used the Bloom’s taxonomy of cognitive domain to classify

the learning levels. The result of the case study demonstrates that the self-

directed learning model provides a clear and easy-to-use coding scheme in the

study of cognitive activities during software engineering processes.

9.3 Cognitive Process during Incremental Software Development

In order to study how a programmer learns and what is the cognitive

process during incremental software development, we applied a novel empirical

method that consists of dialog-based protocol, software screen-capturing, and a

coding scheme based on self-directed learning.

From the case study, we found that all intermediate level programmers

followed a similar cognitive process with a similar distribution of the cognitive

activities and Bloom levels. Using incremental software development with the

test-first approach, absorption is the dominant activity behind the process.

Reorganization often occurs, but denial and expulsion occasionally appear. The

four cognitive activities appear at four of the six of Bloom’s levels.

Compared to intermediate programmers, experts discuss more domain

concepts at a greater length of time before they start writing their code. Experts

concentrate mostly on one concept at one time, while intermediate programmers

www.manaraa.com

117

often discuss several concepts simultaneously. Experts are willing to reconsider

and correct obsolete design decisions, while intermediate programmers retain all

design decisions. Experts have more absorption activities at higher Bloom

levels, such as analysis and synthesis, whereas intermediate programmers had

more absorption activities at lower Bloom levels, such as comprehension and

application. Experts spend more time analyzing the knowledge and generating

test cases, intermediate programmers spend more time learning the knowledge.

9.4 Cognitive Process during Program Debugging

In this case study, we studied the cognitive aspect of program debugging

using self-directed learning theory. The activities in program debugging were

classified according to the four cognitive activities at six levels in Bloom’s

hierarchy. The case study showed that for debugging, programmers have to

utilize all six levels of Bloom’s hierarchy in order to be able to make the

necessary updates. This indicates the program debugging is a complex and

difficult task.

The case study result also indicated that during program debugging,

absorption is the driving activity that occurs most frequently and at all six learning

levels. Reorganization also appears. Expulsion only happens on knowledge

level. No denial activity is found in this case study. All six Bloom’s levels are

identified in the case study. Activities at comprehension level take up to 28.56%,

the biggest portion of total activities.

www.manaraa.com

118

We speculate that novices may spend more time in accumulating

knowledge and in comprehending. In other words, novices are more likely to

spend more time on the two lowest levels of the hierarchy. By contrast, experts,

who are already confident with this knowledge and in comprehension,

concentrate on application, analysis, synthesis and evaluation. We believe that

this is what forms the large gap in the performance of novices and experts.

9.5 Pair Programming in Software Evolution Course Projects

Pair programming has been used in undergraduate classes in order to

develop student skills and to enhance student learning. Experiments with such

an approach have demonstrated positive effects. This case study investigates

the effects of pair programming in graduate software engineering classes with

six students who were assigned to work on incremental changes on an open

source application either as pairs or as individuals. During the experiment, we

found that paired students completed their change request tasks faster and with

higher quality than individuals. They also wrote less lines of code and used

more meaningful variable names. The result of the case study shows that pair

programming could be an effective and useful approach for graduate software

engineering classes.

Because of maturity, a good command of programming knowledge,

experience in cooperation, and the moderate size of graduate software

www.manaraa.com

119

engineering class projects, graduate students are ideal candidates to use pair

programming in their classroom projects.

Graduate software engineering class projects are normally of moderate

size. Graduate students are both mature and experienced in cooperation and

most of them have a good command of programming knowledge. All the above

factors make pair programming ideal for graduate classroom projects.

9.6 Potential Future Work

In the future, we will be using our empirical approach to study other

software engineering processes where dialog-based protocol (i. e., pair

programming) is applicable. In particular, we want to study more detailed

activities that constitute software evolution, such as change request analysis,

concept location, impact analysis, change propagation, regression testing, and

others. We are hoping to be able to distinguish those different software

engineering activities.

Based on the self-directed learning model, we plan to build a

documentation tool which can be used to capture the domain knowledge and

programming knowledge during incremental software development. The

knowledge which is not preserved in the code, but appears in the development

process, might be useful for maintenance and debugging as well. Therefore,

documenting the knowledge during software development is necessary.

www.manaraa.com

120

We also plan to conduct research on software evolution in large programs

in order to understand the impact of the program size on the cognitive activities

of the programmers.

www.manaraa.com

121

APPENDIX A

PILOT STUDY ON INCREMENTAL SOFTWARE DEVELOPMENT

1. Introduction

At the beginning of this research, we conducted a pilot study on

incremental software development [119] [120]. For simplicity, we decided to

concentrate on the eXtreme Programming process [10] where pair programming

is one of the recommended practices. We use one XP programming example,

which was done by two experts who have been working in industry for more than

25 years [93].

Pair programming offers a unique opportunity to study the parallel

construction of both the program and the programmer knowledge. In pair

programming, the programmers communicate with each other about the evolving

program. By recording and analyzing their dialog, we study how both the

knowledge and program grow.

The programmers take change requests one at a time and make

corresponding program changes. The changes that the programmers perform on

the programs fall into three categories: additions of the new functionality called

incremental changes, deletions of functionality called retractions, and

restructurings of the program called refactorings. Of them, the incremental

change is done in direct response to a change request, while retraction and

www.manaraa.com

122

refactoring are done in response to the whole history of accumulated incremental

changes and resulting program structure.

We [119] demonstrated that the knowledge growing process in

incremental software development is analogous to constructivist learning (Table

A.1). A programmer constructs the program based on the sequence of change

requests, such as additions of the new functionality (incremental changes),

deletions of functionality (retractions), and restructuring of the program

(refactoring). The corresponding cognitive activities are absorption, expulsion,

and reorganization. Sometimes, a programmer might find a change request that

is impossible to accomplish, that change request then has to be rejected. The

cognitive activity for that is denial. We [119] also found that absorption is the

dominant activity behind the process during incremental software development.

Reorganization often occurs, but denial and expulsion only appear occasionally.

Table A.1: Analogy of incremental software development and constructivism

Incremental development Constructivist learning
Programming activity Cognitive activities
Incremental change Absorption
Rejection of change request Denial
Refactoring Reorganization
Retraction Expulsion

2. Pilot Study Result

The program developed during this case study records bowling scores [93].

The programming pair started the process with the preliminary knowledge of the

domain (bowling rules). This preliminary knowledge is represented in Figure. A.1,

where concepts are represented by rectangles and the arrows represent the

www.manaraa.com

123

dependencies. The dependencies stand for the order in which the concepts have

to be explained to one not familiar with the domain. A concept can be explained

only if all previous concepts it is dependent on have been explained and

understood. Gruber (1993) [71] discussed issues of defining a common theoretical

framework and vocabulary so that interested agents can make and share a

particular ontological commitment, such as classes, functions and other objects.

For simplicity, we use UML notation to represent design decisions in our work.

pin

frame

ball

sparestrike

throw

scorer current score

game

score
card

team

Figure.A.1: Domain concepts in the pilot study

This original domain knowledge serves also as a backlog of things to do,

as the programmers intend to implement a program with functionality that fully

covers this domain knowledge. Preliminary programming knowledge includes

knowledge of the programming language, algorithms, eXtreme Programming

practices, and so forth.

www.manaraa.com

124

Equipped with this knowledge, the programmers implemented a sequence

of the program versions and recorded their dialog. The UML class diagram [57]

of the first version is in Figure A.2. The design decisions that led to this diagram

were extracted from the recorded dialog and appear in Figure A.3. The

rectangles represent design decisions while arrows represent the order in which

the design decisions were made. Dark rectangles represent domain concepts

that serve as the basis of some of the design decisions.

TestCase

TestThrow

testThrow()

TestFrame

TestFrame()

testScoreNoThrow()

testAddOneThrow()

Throw Score

Frame

getScore()

add()

Figure A.2: UML class diagram for the first version

www.manaraa.com

125

Throw

TestThrow

throw

Score

TestFrame

getScore

testScoreNoThrow

add

frame

score

testScoreOneThrow

Frame

Figure A.3: Design decisions for the first version

Please note that the order of the design decisions does not correspond to

the order of the dependencies in the UML diagram. If the two orders were

identical, that would mean that all design decisions were done in bottom-up

order. The development continued through several steps; see the progress of

the learning in Figure A.4, Figure A.5, and Figure A.7. The resulting UML class

diagram of the program is in Figure A.6.

www.manaraa.com

126

Throw

TestThrow

throw

Frame

Score

TestFrame

getScore

testScoreNoThrow

testScoreOneThrow

add

frame

score
Game

game

TestGame

scoreadd

itsScore

testFourThrowsNoMark

ScoreForFrame

itsCurrentThrows

testSimpleSpare setUp testSimpleFrameAfterSparegetCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

Pins pins

spareSpare

strike

Strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

itsThrows
ball

Figure A.4: Design decisions in the middle of development

We divided this dialog into 84 small episodes. Two independent observers

classified each episode as one of the four cognitive activities and one of the six

levels of Bloom’s taxonomy, using the verbs in the dialog as the clue, see Tables

2.2 and 4.1. There were disagreements in approximately 10% of the episodes.

There was also an observer bias that led one observer to score higher on

Bloom’s scale than the other, with the average score being 0.5 higher. While

www.manaraa.com

127

acknowledging these differences, we found that, in general, the classification

was acceptable and reliable.

testScoreOneThrow

Game

game

TestGame

scoreadd

itsScore

testFourThrowsNoMark

ScoreForFrame

itsCurrentThrows

testSimpleSpare setUp testSimpleFrameAfterSparegetCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

Pins pins

spareSpare

strike

Strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

itsThrows
ball

Figure A.5: Design decisions after class Frame was abandoned

www.manaraa.com

128

TestGame

g : Game

TestGame()
testTwoThrowsNoMark()
testFourThrowsNoMark()
testSimpleSpare()
setUp()
testSimpleFrameAfterSpare()
testSimpleSt rike()
testP erfectGame()
testEndOfArray()
testSampleGame()
testHeartBreak()
testTenthFrameSpare()

Scorer

bal l : int
i tsThrows : []int
i tsCurrentThrow : int

addThrow()
scoreForFrame()
strike()
spare()
nextTwoBalls()
nextBall ()
twoBallsInFrame()

Game

it sCurrentFrame : int
fi rstThrowInFrame : boolean
it sScorer : Scorer

score()
add()
adjustCurrentFrame()
handleSecondThrow()
advanceFrame()
adjustFrameForSt rike()

Figure A.6: UML class diagram for the final program

3. Discussion of the Result of the Case Study

In the case study, we observed that the knowledge required by even a

small program is quite extensive, as demonstrated in Fig. A.4. It should be

remembered that these figures are only the “tip of the iceberg”, as there is a

www.manaraa.com

129

large preliminary knowledge of the domain and programming that these figures

do not capture. Yet all that knowledge is necessary to evolve the program.

testScoreOneThrow

Game

game

TestGame

scoreadd

itsScore

testFourThrowsNoMark

scoreForFrame

itsCurrentThrows

testSimpleSpare setUp testSimpleFrameAfterSparegetCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

spareSpare

strike

Strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

itsThrows
ball

advancedFrame adjustCurrentFrame

nextBall

nextTwoBall twoBallIsInFramescorerScorer

addThrow

Figure A.7: Design decisions at the end of development

During the incremental program development, the most common cognitive

activity was absorption. While absorption was the driving force of the learning,

there was one large episode of knowledge expulsion in the last part of the dialog.

Class “Frame” of Figure A.4 and six related design decisions out of the total of

www.manaraa.com

130

39 were retracted, resulting in the knowledge change. This episode illustrates the

non-monotonic nature of self-directed learning. The changing number of

concepts and their dependencies is presented in Figure. 5.2.

There were also episodes of reorganization of the knowledge. The

rejection of concepts Score Card and Team in the first part of the dialog are

examples of denial.

We observed that the absorption occurred most often at the beginning

and the middle of the dialog, while the expulsion happened most often in the last

part. Reorganization appeared mostly in the middle and last parts and denial

appeared only in the first and middle parts of the dialog. The episodes belong to

all levels of Bloom’s hierarchy except the lowest and highest one.

Table A.2. shows that the episodes which were classified according to the

self-directed learning theory. Each episode shows either creating new concepts

or revisiting and updating existing ones. Almost all the domain concepts were

revisited and updated. The domain concept “Frame” was updated as many as 9

times, with each update resulting in more accurate knowledge. Many design

decisions were also updated, but less frequently than domain concepts.

As a result of the case study, we conclude that the self-directed learning

model explains the learning that takes place in incremental software

development.

www.manaraa.com

131

Table A.2: The classification of the cognitive activities and
Bloom levels in the case study on incremental software

development

(A: absorption; d: denial; r: reorganization; e: expulsion; 1-6 refers to the
six Bloom’s levels starting from knowledge)

No Programmers’ action Bloom’s
level

activity

1 M: What I'd like to do is write an application that keeps track of a bowling
league. It needs to record all the games, determine the ranks of the teams,
determine the winners and losers of each weekly match, and accurately
score each game.
K: You rattled off several user stories, which one would you like to start
with.

2 a

2 M: Let's begin with scoring a single game
K: What does that mean? What are the inputs and outputs for this story?
M: It seems to me that the inputs are simply a sequence of throws. A throw
is just an integer that tells how many pins were knocked down by the ball.
The output is the data on a standard bowling score card, a set of frames
populated with the pins knocked down by each throw, and marks denoting
spares and strikes. The most important number in each frame is the current
game score

3 a

3 K: Let me sketch out a little picture of this score card to give us a visual
reminder of the requirements.
K: but it will serve as a decent acceptance test
M: We'll need others, but let's deal with that later. How should we start?
Shall we come up with a design for the system?
K: but I wouldn't mind a UML diagram showing the problem domain
concepts that we might see from the score card. That will give us some
candidate objects that we can explore further in code.”

3 a

4 M: Clearly a game object consists of a sequence of ten frames. Each frame
object contains one, two, or three throws.
K: Great minds. That was exactly what I was thinking. Let me quickly draw
that, but if you tell Kent, I'll deny it.

2 a

5 K: Shall we start at the end of the dependency chain and work backwards?
That will make testing easier
M: Sure, why not. Let's create a test case for the Throw class.
K: Do you have a clue what the behavior of a Throw object should be?
M: It holds the number of pins knocked down by the player

5 a

6 K: Maybe we should come back to it and focus on an object that actually has
behavior, instead of one that's just a data store.
M: You mean the Throw class might not really exist?"
K: Well, if it doesn't have any behavior, how important can it be? I don't
know if it exists or not yet. I'd just feel more productive if we were working
on an object that had more than setters and getters for methods.

4 e

www.manaraa.com

132

7 M: let's move up the dependency chain to Frame and see if there are any
test cases we can write that will force us to finish Throw

4 a

8 K: Okay, new file, new test case
M: Now, can you think of any interesting test cases for Frame? A frame
might provide its score, the number of pins on each throw, whether there
was a strike or a spare...
M: the test case passes

5 a

9 M: But Score is a really stupid function. It will fail if we add a throw to the
frame.

4 a

10 M: So let's write the test case that adds some throws and then checks the
score

5 a

11 M: That doesn't compile. There's no add method in Frame. 2 a

12 K: I'll bet if you define the method it will compile.
M: This doesn't compile because we haven't written the Throw class

4 a

13 K: The test is passing an integer, and the method expects a Throw object. 2 a

14 K: Before we go down the Throw path again, can you describe its behavior?
M: didn't even notice that I had written f.add(5). I should have written
f.add(new Throw(5)), but that's ugly as hell. What I really want to write is
f.add(5).
K: Can you describe any behavior of a Throw object — binary response.
M: I don't know if there is any behavior in Throw; I'm beginning to think a
Throw is just an int. However, we don't need to consider that yet, since we
can write Frame.add to take an int

2 e

15 K: Then I think we should do that for no other reason than it's simple.
M: OK, this compiles and fails the test. Now, let's make the test pass.
M: This compiles and passes the tests. But it's clearly simplistic. What's the
next test case.

3 a

16 M: Frame.add is a fragile function. What if you call it with an 11?
K: It can throw an exception if that happens. But who is calling it? Is this
going to be an application framework that thousands of people will use and
we have to protect against such things, or is this going to be used by you and
only you? If the latter, just don't call it with an 11

4 a

17 M: the tests in the rest of the system will catch an invalid argument. If we
run into trouble, we can put the check in later. So, the add function doesn't
currently handle strikes or spares.

5 a

18 M: Let's write a test case that expresses that.
K: if we call add(10) to represent a strike, what should getScore return? I
don't know how to write the assertion, so maybe we're asking the wrong
question. Or we're asking the right question to the wrong object.

5 a

19 M: When you call add(10), or add(3) followed by add(7), then calling
getScore on the Frame is meaningless. The frame would have to look ahead
at later frames to calculate its score. If those later frames don't exist, then it
would have to return something ugly like -1. I don't want to return -1

4 a

20 K: You've introduced the idea of frames knowing about other frames. Who
is holding these different frame objects? So Game depends on Frame, and
Frame in turn depends on Game

2 a

www.manaraa.com

133

21 M: Frames don't have to depend upon Game; they could be arranged in a
linked list. Each frame could hold pointers to its next and previous frames.
To get the score from a frame, the frame would look backwards to get the
score of the previous frame and look forwards for any spare or strike balls it
needs.

2 d

22 K: I'm feeling kind of dumb because I can't visualize this. Show me some
code
M: So, we need a test case first
K: Game or another test for Frame?
M: I think we need one for Game, since it's Game that will build the frames
and hook them up to each other."
K: Do you want to stop what we're doing on Frame and do a mental long
jump to Game, or do you just want to have a MockGame object that does
just what we need to get Frame working?
M: let's stop working on Frame and start working on Game.

2 a

23 M: The test cases in Game should prove that we need the linked list of
Frames

5 a

24 K: but I'm still looking for proof for this list of Frames.
M: Let's keep following these test cases and see where they lead.
M: OK, this compiles and fails the test. Now let's make it pass.
M: This passes. Good

5 a

25 K: I'm still looking for this great proof of the need for a linked list of frame
objects. That's what led us to Game in the first place."

3 a

26 M: I fully expect that once we start injecting spare and strike test cases, we'll
have to build frames and tie them together in a linked list. But I don't want
to build that until the code forces us to.

4 a

27 K: Let's keep going in small steps on Game. What about another test that
tests two throws but with no spare?
M: Yep, that one passes

5 a

28 M: Now let's try four balls, with no marks. That will pass too. 3 a

29 K: I didn't expect this. We can keep adding throws, and we don't ever even
need a Frame. But we haven't done a spare or a strike yet. Maybe that's
when we'll have to make one
M: That's what I'm counting on

4 d

30 K: I forgot that we have to be able to show the score in each frame.
M: First let's make this test case fail by adding the scoreForFrame method
to Game.
M: this compiles and fails. Now, how do we make it pass?

5 a

31 K: We can start making frame objects.
M: We could just create an array of integers in Game. Each call to add
would append a new integer onto the array. Each call to scoreForFrame
will just work forward through the array and calculate the score.
M: that works

5 a

32 K: Why the magic number 21
M: That's the maximum possible number of throws in a game
K: "scoreForFrame needs to be refactored to be more communicative.

4 r

33 K: But before we consider refactoring, let me ask another question: Is Game
the best place for this method? In my mind, Game is violating Bertrand

4 a

www.manaraa.com

134

Meyer's SRP (Single Responsibility Principle). It is accepting throws and it
knows how to score for each frame. What would you think about a Scorer
object?"

34 M: but there are side-effects in the score+= expression. They don't matter
here because it doesn't matter which order the two addend expressions are
evaluated in.
K: I suppose we could do an experiment to verify that there aren't any side-
effects, but that function isn't going to work with spares and strikes. Should
we keep trying to make it more readable or should we push further on its
functionality?"

5 d

35 M: The experiment would only have meaning on certain compilers. Other
compilers might use different evaluation orders. Let's get rid of the order
dependency and then push on with more test cases.

4 r

36 M: next test case. Let's try a spare
M: Let's refactor the test and put the creation of the game in a setUp
function.

4 r

37 M: That's better now. let's write the spare test case.
M: but I think the increment of ball in the frameScore==10 case shouldn't
be there. Here's a test case that proves my point

5 a

38 M: See, that fails. Now if we just take out that pesky extra increment. it still
fails.... Could it be that the score method is wrong?

4 d

39 M: I'll test that by changing the test case to use scoreForFrame(2) 2 a

40 M: That passes. The score method must be messed up. 2 a

41 M: that's wrong. The score method is just returning the sum of the pins, not
the proper score. What we need score to do is call scoreForFrame with the
current frame

4 a

42 K: We don't know what the current frame is. Let's add that message to each
of our current tests, one at a time

4 a

43 M: OK, that works. But it's stupid. Let's do the next test case 2 a

44 M: let's try the next. This one fails. Now let's make it pass 2 a

45 K: I think the algorithm is trivial. Just divide the number of throws by two,
since there are two throws per frame. Unless we have a strike ... but we don't
have strikes yet, so let's ignore them here too.
K: What if we don't calculate it each time? What if we adjust a
currentFrame member variable after each throw?
M: OK, this works

4 a

46 M: But it also implies that the current frame is the frame of the last ball
thrown, not the frame that the next ball will be thrown into

2 d

47 K: But before we go screwing around with it some more, let's pull that code
out of add and put it in a private member function called
adjustCurrentFrame or something

5 r

48 M: Now let's change the variable and function names to be more clear. What
should we call itsCurrentFrame?

4 r

49 K: I kind of like that name. I don't think we're incrementing it in the right
place though. The current frame, to me, is the frame number that I'm

4 a

www.manaraa.com

135

throwing in. So it should get incremented right after the last throw in a
frame.

50 M: Let's change the test cases to reflect that; then we'll fix
adjustCurrentFrame.
M: OK, that's working.

3 r

51 M: Now let's test getCurrentFrame in the two spare cases. This works. 3 a

52 M: Now, back to the original problem. We need score to work. We can now
write score to call scoreForFrame(getCurrentFrame()-1
M: This fails the TestOneThrow test case.

3 a

53 M: Let's look at it. With only one throw, the first frame is incomplete. The
score method is calling scoreForFrame(0).
K: Who are we writing this program for, and who is going to be calling
score? Is it reasonable to assume that it won't get called on an incomplete
frame?
M: To get around this, we have taken the score out of the testOneThrow
test case. Is that what we want to do

4 r

54 K: We could even eliminate the entire testOneThrow test case. It was used
to ramp us up to the test cases of interest. Does it really serve a useful
purpose now? We still have coverage in all of the other test cases

3 e

55 M: Now, we'd better work on the strike test case. After all, we want to see
all those Frame objects built into a linked list, don't we?
M: this compiles and fails as predicted.

4 a

56 K: Now we need to make it pass. OK, that wasn't too hard. 2 a

57 M: Let's see if it can score a perfect game.
M: it's saying the score is 330.
K: Because the current frame is getting incremented all the way to 12.
M: We need to limit it to 10.

3 a

58 M: now it's saying that the score is 270. What's going on?
K: the score function is subtracting one from getCurrentFrame, so it's
giving you the score for frame 9, not 10.
M: You mean I should limit the current frame to 11 not 10?

4 a

59 M: OK, so now it gets the score correct, but fails because the current frame
is 11 and not 10.

2 a

60 M: We want the current frame to be the frame the player is throwing into,
but what does that mean at the end of the game?
K: Maybe we should go back to the idea that the current frame is the frame
of the last ball thrown
M: Or maybe we need to come up with the concept of the last completed
frame? After all, the score of the game at any point in time is the score in the
last completed frame.
K: A completed frame is a frame that you can write the score into. Yes, a
frame with a spare in it completes after the next ball.
M: A frame with a strike in it completes after the next two balls. A frame
with no mark completes after the second ball in the frame.

3 a

61 M: We are trying to get the score method to work, right? All we need to do
is force score to call scoreForFrame(10) if the game is complete.
K: How do we know if the game is complete?"

3 a

www.manaraa.com

136

M: If adjustCurrentFrame ever tries to increment itsCurrentFrame past
the 10th frame, then the game is complete.

62 K: All you are saying is that if getCurrentFrame returns 11, the game is
complete; that's the way the code works now. M: You mean we should
change the test case to match the code.
M: that works.

2 a

63 M: I suppose it's no worse than getMonth returning zero for January, but I
still feel uneasy about it.
K: That doesn't fail.

3 a

64 K: I thought since the 21st position of the array was a strike, the scorer
would try to add the 22nd and 23rd positions to the score. But I guess not.

2 a

65 M: you are still thinking about that scorer object, aren't you? Anyway, I see
what you were getting at, but since score never calls scoreForFrame with a
number larger than 10, the last strike is not actually counted as a strike. It's
just counted at a 10 to complete the last spare. We never walk beyond the
end of the array.
K: , let's pump our original score card into the program
K: Well, that works. Are there any other test cases that you can think of

4 a

66 M: let's test a few more boundary conditions. How about the poor schmuck
who throws 11 strikes and then a final 9.
M: That works.

4 a

67 M: how about a 10th frame spare?
M: That works too.

4 a

68 K: Besides I really want to refactor this mess. I still see the scorer object in
there somewhere.
M: I'd really like to extract the body of that else clause into a seperate
function named handleSecondThrow, but I can't because it uses ball,
firstThrow, and secondThrow local variables.
K: We could turn those locals into member variables.
M: that kind of reinforces your notion that we'll be able to pull the scoring
out into its own scorer object.

3 r

69 K: I hadn't expected the name collision. We already had an instance variable
named firstThrow. But it is better named firstThrowInFrame. Anyway,
this works now. So we can pull the else clause out into its own function

4 r

70 M: Look at the structure of scoreForFrame! In pseudocode, it looks
something like this.
K: That's pretty much the rules for scoring bowling isn't it? let's see if we
can get that structure in the real function. First let's change the way the ball
variable is being incremented so that the three cases manipulate it
independently.

3 r

71 M: now let's get rid of the firstThrow and secondThrow variables and
replace them with appropriate functions.

2 r

72 M: That step works; let's keep going 2 a

73 M: OK, that works too. Now let's deal with frameScore 2 a

74 K: you aren't incrementing ball in a consistent manner. In the spare and
strike case, you increment before you calculate the score. In the
twoBallsInFrame case, you increment after you calculate the score. And

3 r

www.manaraa.com

137

the code depends upon this order!
M: I'm planning on moving the increments into strike, spare, and
twoBallsInFrame. That way they'll disappear from the scoreForFrame
function, and the function will look just like our pseudocode

75 M: OK, now since nobody uses firstThrow, secondThrow, and
frameScore anymore, we can get rid of them.

3 e

76 M: since the only variable that couples the three cases is ball, and since ball
is dealt with independently in each case, we can merge the three cases
together

3 r

77 M: you would like to move the increments?
M: Look at that scoreForFrame function. That's the rules of bowling stated
about as succinctly as possible.

2 a

78 K: what happened to the linked list of Frame objects? 2 a

79 K: We made a mistake starting with the Throw class. We should have
started with the Game class first
M: , next time let's try starting at the highest level and work down
K: Down Design!??!?! Could DeMarco have been right all along.
M: Correction: Top Down Test First Design. Frankly, I don't know if this is
a good rule or not. It's just what would have helped us in this case. So next
time, I'm going to try it and see what happens.

4 a

80 K: Anyway we still have some refactoring to do. The ball variable is just a
private iterator for scoreForFrame and its minions. They should all be
moved into a different object
M: your Scorer object. You were right after all. Let's do it

3 r

81 K: That's much better. Now Game just keeps track of frames, and Scorer
just calculates the score. The SRP rocks.
M: Did you notice that the itsScore variable is not being used anymore?
K: You're right. Let's kill it

4 e

82 K: Now should we clean up the adjustCurrentFrame stuff.
M: first let's extract the increments into a single function that also restricts
the frame to 11.

3 r

83 M: that's a little better. Now let's break out the strike case into its own
function.
M: That -1 is odd. It's the only place we truly use getCurrentFrame, and
yet we need to adjust what it returns.
M: The code wants itsCurrentFrame to represent the frame of the last
thrown ball, not the frame we are about to throw into.
M: we should remove getCurrentFrame from all the test cases and remove
the getCurrentFrame function itself. Nobody really uses it
K: , I get your point. I'll do it. It'll be like putting a lame horse out of its
misery.
M: You mean to tell me that we were fretting over that. All we did was
change the limit from 11 to 10 and remove the -1.
K: it really wasn't worth all the angst we gave it

4 r

84 M: looks like we are done. Let's just read through the whole program and
see if it's as simple and communicative as it can be

2 a

www.manaraa.com

138

APPENDIX B

CASE STUDY ON INCREMENTAL SOFTWARE DEVELOPMENT

In this section, we include those detailed data for each intermediate pair

during incremental software development. Tables B.1-B.8 show the distribution

of the cognitive activities and Bloom’s levels throughout the recorded episodes

for pair I to pair VIII. Figures B.1-B.8 are the UML class diagrams for the

programs developed by pair I to pair VIII. The data are summarized in Chapter 7.

Table B.1: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair I

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 18
27.69%

0
0%

2
3.08%

0
0%

20
30.77%

Application 19
29.23%

0
0%

3
4.62%

1
1.54%

23
35.39%

Analysis 8
12.31%

0
0%

0
0%

2
3.07%

10
15.38%

Synthesis 12
18.46%

0
0%

0
0%

0
0%

12
18.46%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 57
87.69%

0
0%

5
7.70%

3
4.61%

65
100%

www.manaraa.com

139

Bowling

iFrameIndex : int
ScoreOfFirstThrow [] : int
ScoreOfSecondThrow [] : int
scoreOfFrame [] : int
BonusOfFirstThrow : int
BonusOfSecondThrow : int
rand : Random

Bowling()
getFirstScore()
getScore()
getFrameIndex()
getBonusScore()
getScore1()
getScore()
getFrameScore()

TestBowling

TestBowling()
testGetScore()
testGetFrameScore()
test2Throw()
test4Throw()
testSimpleStrike()
test2Strike()
testLastSpareGame()
testPerfectGame()
testGame()
testGame1()

Figure B.1: UML class diagram for the pair I’s program

www.manaraa.com

140

 Table B.2: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair II

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 14
31.11%

0
0%

0
0%

0
0%

14
31.11%

Application 17
37.78%

1
2.22%

2
4.45%

0
0%

20
44.45%

Analysis 6
13.33%

0
0%

0
0%

0
0%

6
13.33 %

Synthesis 5
11.11%

0
0%

0
0%

0
0%

5
11.11%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 42
93.33%

1
2.2%

2
4.45%

0
0%

45
100%

TestFrame

testframepoints()

FrameList

first : Frame
second : Frame
total : int

FrameList()
add()
totalScore()

Frame
firstThrow
secondThrow
next Frame

Frame()
Frame()
information()
setNext()
getNext()
getFirstThrow()
getSecondThrow()
score()
bonus()

Figure B.2: UML class diagram for the pair II’s program

www.manaraa.com

141

Table B.3: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair III

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 12
19.35%

1
1.61%

0
0%

0
0%

13
20.96%

Application 15
24.20%

0
0%

7
11.29%

0
0%

22
35.49%

Analysis 13
20.97%

0
0%

2
3.23%

0
0%

15
24.20%

Synthesis 12
19.35%

0
0%

0
0%

0
0%

12
19.35%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 52
83.87%

1
1.61%

9
14.52%

0
0%

62
100%

TestFrame

testUpdateFrame()
testPlayer()
test2Throw()
testStrike()
test300()
testSpare()
testCompleteGame()
testBowlingFor Two()
testDoubleStrike()

Frame

Total : int
bonus : int
score : int
numOfBonus : int
numThrows : int
name

Frame()
updateFrame()
updateBonus()

Player

currentFrame : int
standing : int
changeFrame : Boolean
done : Boolean
myFrame [] Frame
total : int
name

Player()
update()
runningTotal()

Figure B.3: UML class diagram for the pair III’s program

www.manaraa.com

142

Table B.4: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair IV

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 15
21.54%

0
0%

1
1.45%

0
0%

16
23.19%

Application 26
37.68%

0
0%

1
1.45%

1
1.45%

28
40.58%

Analysis 10
14.49%

0
0%

1
1.45%

0
0%

11
15.94%

Synthesis 14
20.29%

0
0%

0
0%

0
0%

14
20.29%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 65
94.20%

0
0%

3
4.35%

1
1.45%

69
100%

www.manaraa.com

143

TestGame

testTotal()

Bowling

frames [] Frame

Bowling()
setBonus()
lastFrame()
getTotal()

Frame

ball1 : int
ball2 : int
bonus : int
strike : boolean
spare : boolean

Frame()
getFrameValue()
getBall1()
getBall2()
setBall1()
setBall2()
setBonus()
getBonus()
setFramePoints()
isStrike()
isSpare()

TestFrameValue

testInput()

Figure B.4: UML class diagram for the pair IV’s program

www.manaraa.com

144

Table B.5: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair V

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 16
23.88%

0
0%

0
0%

0
0%

16
23.88%

Application 25
37.31%

0
0%

0
3.00%

1
1.49%

26
38.81%

Analysis 12
17.91%

0
0%

2
3%

0
0%

14
20.90%

Synthesis 11
16.41%

0
0%

0
0%

0
0%

11
16.41%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 64
95.51%

0
0%

2
3.00%

1
1.49%

67
100%

www.manaraa.com

145

Frame

sum : int
x : int
y : int
z : int
frame1 : int
frame2 : int
frame3 : int
frame4 : int
first_number : String
second_number : String
pins [] int
throwCount : int
nextFrame : Frame

getScore()
getScore()
isStrike()
isSpare()
throwNeededForScore()
addPins()
giveThrowToNextFrame()
isFull()
totalPins()
isScoreAvailable()
test1()

TestBowling

testoneThrow()
testMine()
testPerfectGame()

Figure B.5: UML class diagram for the pair V’s program

www.manaraa.com

146

Table B.6: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair VI

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 11
16.66%

0
0%

1
1.52%

1
1.52%

13
19.70%

Application 23
34.85%

0
0%

1
1.52%

1
1.52%

25
37.88%

Analysis 13
19.70%

0
0%

1
1.52%

0
0%

14
21.21%

Synthesis 14
21.21%

0
0%

0
0%

0
0%

14
21.21%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 61
92.42%

0
0%

3
4.55%

2
3.03%

66
100%

www.manaraa.com

147

TestBoardController

testTurn()
testDoGame()
testCalculateScoreGame()
testRandomCalculateScore()

Frame

mFirstThrow
mSecondThrow

Player

mPlayerName : String
mScore : int

Player()
pThrow()
setName()
getName()

BoardController

mPlayer : Player
mVector : Vector

makeVector()
doCalculateScore()
doGame()

TestFrame

TestFrame()
testThrow()
testGetSetName()
testBCDoTurn()
testBCGame()
testCalculateScore()
testRandomCalculateScores()

TestPlayer

testThrow()
setGetPlayerName()

Figure B.6: UML class diagram for the pair VI’s program

www.manaraa.com

148

Table B.7: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair VII

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 19
29.69%

0
0%

0
0%

0
0%

19
29.69%

Application 24
37.5%

0
0%

0
0%

1
1.56%

25
39.06%

Analysis 7
10.94%

0
0%

0
0%

0
0%

7
10.94 %

Synthesis 13
20.31 %

0
0%

0
0%

0
0%

13
20.31%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 63
98.44%

0
0%

0
0%

1
1.56%

64
100%

www.manaraa.com

149

TestFrame

testSetFirstRoll()
testSetSecondRoll()
testIsStrike()
testIsSpare()
testGetTotal()
testReset()

BowlingFrame

firstRoll : int
secondRoll : int

BowlingFrame()
reset()
setFirstRoll()
getFirstRoll()
setSecondRoll()
getSecondRoll()
isStrike)()
isSpare()
getTotal()

BowlingScore

BowlingScore()
reset()
getScoreAtFrame()

BowlingScore

frame [] BowlingFrame

BowlingScore()
reset()
getScoreAtFrame()

Figure B.7: UML class diagram for the pair VII’s program

www.manaraa.com

150

Table B.8: The distribution of the cognitive activities and
Bloom’s levels throughout the recorded episodes for pair VIII

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 15
25.00%

0
0%

0
0%

0
0%

15
25.00%

Application 22
36.67%

0
0%

2
3.33%

1
1.67%

25
41.67%

Analysis 8
13.33%

0
0%

0
0%

0
0%

8
13.33%

Synthesis 12
20.00%

0
0%

0
0%

0
0%

12
20.00%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 57
95.00 %

0
0%

2
3.33%

1
1.67%

60
100%

www.manaraa.com

151

testFrame

testSumGreaterThan10()
testSumLessThanZero()
testSumAcceptableInput()

Frame

score1 : int
score2 : int
totalValue : int

Frame()
sum()
incrementalTotalValue()
getTotalValue)()
setScore1()
getScore1()
setScore2()
getScore2()

Game

Game()
getScore()
populateFrame()
getFrameAt()

Game

frames [] Frame
score : int
STRIKE : int
SPARE : int
NORMAL_FRAME_MAX : int
FRAME_MAX : int

Game()
getScore()
populateFrame()
getFrameAt()

Figure B.8: UML class diagram for the pair VIII’s program

www.manaraa.com

152

APPENDIX C

CASE STUDY ON PROGRAM DEBUGGING

The case study description and the distribution of the cognitive

activities and Bloom levels are in Chapter 6. The Table C.1 contains the

classification of cognitive activities and Bloom’s levels for all the 28

episodes.

Table C.1: Classification of the cognitive activities and Bloom’s levels in the case
study on program debugging

(A: absorption; d: denial; r: reorganization; e: expulsion; 1-6 refers to the
six Bloom’s levels starting from knowledge)

Epis
ode

Programmer’s action Bloom
level

Cognitiv
e activity

1 The programmer was provided with the symptoms “system not
responding or too slow”.

2 a

2 Based on his experience with the architecture of similar systems, the
programmer considered several possible causes.

4 a

3 He decided that the most likely cause is the slow database query that
slows down access to the web server. The slow web server then
blocks access to the site.

5 r

4 Based on this assumption, the programmer used a “browser
skeleton” to validate this hypothesis.

4 a

5 The browser skeleton is a test harness, in which a program simulates
customers connecting to the web server.

3 a

6 The average response time was recorded after a browser skeleton
was launched.

2 a

7 Then the actual web browser was launched to connect to the server
and the response time of the server was also recorded.

2 a

8 The result turned out to be 100 times longer than the response time
for the browser skeleton after contrasting the two response times.
This test was repeated several times to make sure that the results
were stable and repeatable.

4 a

9 The test results supported the hypothesis that queries to the database
slow down access to the web server.

5 a

10 The programmer has narrowed down the cause of the problem, but
further work is needed.

6 a

www.manaraa.com

153

11 The next hypothesis was that the web server could not spawn child
processes to handle customer requests.

5 r

12 Based on this assumption, another test was conducted using the
same test harness to observe the state of all processes.

2 a

13 If the hypothesis were true, the number of processes should not
increase after a certain period of time.

3 r

14 However, the result did show that some new processes were
spawned, and the overall number of processes increased.

6 a

15 Therefore, the second hypothesis was not supported by the
evidence.

1 e

16 Nonetheless, a useful observation was obtained: One of the child
processes was accumulating CPU time and others were not.

2 a

17 Based on this observation, the second hypothesis was modified as
“not all child processes were handling inbound requests”

5 r

18 A further investigation was conducted to see what each child was
doing during the browser request process.

3 a

19 It was found that only one child works properly and other children
tried to set a lock on a file that was already locked by another
process.

4 a

20 Therefore, there was a block or race condition that put other child
processes into an infinite loop and blocked their execution.

6 r

21 After reading the Unix manual and going through documentation
and configuration settings, the programmer noticed that the web
server uses system calls getcontext and setcontext, which are used in
user-level threaded applications.

2 a

22 The programmer knew that the web server was actually a multi-
threaded application with user-level threads and found that the child
process was not threading as expected.

3 a

23 Therefore a further hypothesis was made that the actual COTS
server agent was not multi-threaded and, forced the web server to
become blocked.

5 r

24 The server agent provides communication between the web server
and the relational database management system. The present server
agent provided by the database vendor is used with the www server-
side API although it also supports the Common Gateway Interface
(CGI).

2 a

25 If the above hypothesis is true, then using the CGI version of the
same agent instead of www server-side API version of the server
agent would be the right solution, as CGI supports multiple
threading.

6 r

26 A new test was proposed after the www server-side API version of
the server agent was replaced with CGI version.

3 a

27 The test harness and actual web browser were used again. 1 a

28 The result demonstrated that the web server was no longer blocked
after the replacement.

2 r

www.manaraa.com

154

BIBLIOGRAPHY

[1] Adair, G., "The Hawthorne effect: a reconsideration of the methodological

artifact", Journal of Applied Psychology, vol. 69, no. 2, 1984, pp. 334-345.

[2] Alavi, M. and Carlson, P., "A review of MIS research and disciplinary

development", Journal of Management Information Systems, vol. 8, no. 4,

1992, pp. 45-62.

[3] Araki, K., Furukawa, Z., and Cheng, J., "A general framework for debugging",

IEEE Software May 1991, pp. 14-20.

[4] Atwood, M. E. and Ramsey, H. R., "Cognitive structures in the

comprehension and memory of computer programs: an investigation of

computer program debugging." US Army Research Institute for the

Behavioral and Social Sciences, Alexandra,VA 1978.

[5] Baecker, R., DiGiano, C., and Marcus, A., "Software visualization for

debugging", Communications of the ACM, vol. 40, no. 4, April 1997, pp. 44–

54

[6] Baniassad, E. and Murphy, G., "Conceptual module querying for software

reengineering", in Proceedings of 20th International Conference on Software

Engineering, Kyoto, Japan, 1998, pp. 64-73.

[7] Baragry, J., Understanding Software Engineering: From Analogies with other

Disciplines to Philosophical Foundations, Ph.D. Dissertation, La Trobe

University, Bundoora, Australia, 2000.

[8] Baragry, J. and Reed, K., "Why we need a different view of software

architecture", in Proceedings of the Working IEEE/IFIP Conference on

www.manaraa.com

155

Software Architecture (WICSA01), Amsterdam, the Netherlands, 2001, pp.

125.

[9] Basili, V. R., "The role of experimentation in software engineering: past,

present, future ", in Proceedings of the 18th International Conference on

Software Engineering, Los Alamitos, CA, 1996, pp. 442-449.

[10] Beck, K., Extreme Programming Explained, Maassachusettes, Addison-

Wesley, 2000.

[11] Benbunan-Fich, R., "Using protocol analysis to evaluate the usability of a

commercial web site", Information & Management, vol. 39, 2001, pp. 151-

163.

[12] Benedusi, P., Benvenuto, V., and Tomacelli, L., "The role of testing and

dynamic analysis in program comprehension supports", in Proceedings of

the IEEE Second Workshop on Program Comprehension, 1993, pp. 149-

158.

[13] Berlin, L. M., "Beyond program understanding: a look at programming

expertise in industry", in Empirical Studies of Programmers: Fifth Workshop,

Cook, C. R., Scholtz, J. C., and Spohrer, J. C., Eds., Norwood, NJ Ablex

Publishing, 1993, pp. 8-25.

[14] Berry, D. C. and Boardbent, D. E., "The role of instruction and verbalization

in improving performance on complex search tasks", Behavior and

Information Techonology, vol. 9, no. 3, 1990, pp. 175-190.

[15] Biederman, G. B., Stepaniuk, S., Davey, V. A., Raven, K., and Ahn, D.,

"Observational learning in children with down syndrome and developmental

www.manaraa.com

156

delays: the effect of presentation speed in videotaped modelling", Down

Syndrome Research and Practice, vol. 6, no. 1, 1999, pp. 12-18.

[16] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "Program

understanding and the concept assignment problem", Communication of the

ACM, vol. 37, no. 5, May 1994, pp. 72-82.

[17] Bisant, D. B. and Groninger, L., "Cognitive processes in software fault

detection: a review and synthesis", International Journal of Human-Computer

Interaction, vol. 5, no. 2, 1993, pp. 189-206.

[18] Bloom, B. S., "Taxonomy of Educational Objectives: The Classification of

Educational Goals: Handbook, I, Cognitive Domain": New York, Toronto,

Longmans, Green, 1956.

[19] Bohm, D. and Nichol, L., On Dialogue, Brunner-Routledge, 1996.

[20] Brereton, P., Lees, S., Gumbley, M., Boldyreft, C., Drummond, S., Layzell,

P., Macaulay, L., and Young, R., "Distributed group working in software

engineering education", Information & Software Technology, vol. 40, 1998,

pp. 221-227.

[21] Brook, F., The Mythical Man-Month, Addison-Wesley, MA, 1975.

[22] Brooks, R., "Towards a theory of the cognitive processes in computer

programming", International Journal of Man-Machine Studies, vol. 9, no. 6,

1977, pp. 737-742.

[23] Brooks, R., "Studying programmers behavior experimentally: the problems

of proper methodology", Communications of ACM, vol. 23, no. 4, 1980, pp.

207-213.

www.manaraa.com

157

[24] Brooks, R., "Towards a theory of the comprehension of computer

programs", International Journal of Man-Machine Studies, vol. 18, no. 6,

1983, pp. 543-554.

[25] Buckley, J. and Exton, C., "Bloom's taxonomy: a framework for assessing

programmers' knowledge of software systems", in Proceedings of the 11th

International Workshop on Program Comprehension, Portland, Oregon,

2003, pp. 165-174.

[26] Burkhardt, J., DЋtienne, F., and Wiedenbeck, S., "The effect of object-

oriented programming expertise in several dimensions of comprehension

strategies", in Proceedings of the 6th International Workshop on Program

Comprehension, Ischia, Italy, 24 - 26 June 1998, pp. 82-89.

[27] Canfora, G., Cimitile, A., and Visaggio, C., "Working in pairs as a means for

design knowledge building: an empirical study", in Proceedings of

International Workshop on Program Comprehension, Bari, Italy, 24-26 June

2004, pp. 62-69.

[28] Chen, K. and Rajlich, V., "Case study of feature location using dependence

graph", in Proceedings of the 8th International Workshop on Program

Comprehension (IWPC'00), Limerick, Ireland, June 2000, pp. 241-249.

[29] Christensen, L. B., Experimental Methodology, Allyn and Bacon, 1994.

[30] Clayton, R., Rugaber, S., Taylor, L., and Wills, L., "A case study of domain-

based program understanding", in Proceedings of 5th Workshop on Program

Comprehension, Dearborn, Michigan, May 28-30 1997, pp. 102-110.

www.manaraa.com

158

[31] Clayton, R., Rugaber, S., and Wills, L., "Dowsing: a tool framework for

domain-oriented browsing of software artifacts", in Proceedings of the 13th

IEEE International Conference on Automated Software Engineering (ASE

'98), Honolulu, Hawaii, October 1998, pp. 204 -207.

[32] Clayton, R., Rugaber, S., and Wills, L., "On the knowledge required to

understand a program", in Proceedings of the Fifth IEEE Working

Conference on Reverse Engineering, Honolulu, Hawaii, October 1998, pp.

69-78.

[33] Clements, P., Krut, R., Morris, E., and Wallnau, K., "The Gadfly: an

approach to architectural-level system comprehension", in Proceedings of

Fourth IEEE Workshop on Program Comprehension, Berlin, 1996, pp. 178-

186.

[34] Cockburn, A. and Williams, L., "The costs and benefits of pair

programming", in Proceedings of Extreme Programming and Flexible

Processes in Software Engineering, Cagliari, Italy, June 21-23 2000, pp.

223-243.

[35] Confrey, J., "Voice and perspective: hearing epistemological innovation in

students' words", in Revue des Sciences de l'education. Special Issue:

Constructivism in Education, vol. 20(1), Bednarz, N., Larochelle, M., and

Desautels, J., Eds., 1994, pp. 115-133.

[36] Corritore, C. and Wiedenbeck, S., "Direction and scope of comprehension-

related activities by Procedural and Object-Oriented programmers: an

www.manaraa.com

159

empirical study", in Proceedings of 8th International Workshop on Program

Comprehension (IWPC'00), Limerick, Ireland, 10 - 11 June 2000, pp. 139.

[37] Corritore, C. L. and Wiedenbeck, S., "What do novices learn during program

comprehension?" International Journal of Human-Computer Interaction, vol.

3, no. 2, 1991, pp. 199-222.

[38] Corritore, C. L. and Wiedenbeck, S., "Mental representations of expert

Procedural and Object-Oriented programmers in a software maintenance

task", International Journal of Human-Computer Studies, vol. 50, no. 1,

1999, pp. 61-83.

[39] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S., "Hipikat: a project

memory for software development", IEEE Transactions on Software

Engineering, vol. 31, no. 6, 2005, pp. 446 - 465.

[40] Curtis, B., "By the way, did anyone study any real programmers?" Empirical

Studies of Programmers, Ablex Publishing Corporation, Norwood,NJ 1986,

pp. 256-262.

[41] Curtis, B., "A field study of the software design process on large systems",

Communications of the ACM, vol. 13, no. 11, 1988, pp. 1268-1287.

[42] Dalton, J. and Smitd, D., Extending Children's Special Abilities: Strategies

for Primary Classrooms, Melbourne, Victorian Ministry of Education, 1986.

[43] Davies, S. P., "The nature and development of programming plans",

International Journal of Man-Machine Studies, vol. 32, no. 4, 1990, pp. 461-

481.

www.manaraa.com

160

[44] Davies, S. P., "Externalising Information During Coding Activities: Effects of

Expertise, Environment and Task", in Empirical Studies of Programmers:

Fifth Workshop., C. R. Cook, J. C. Scholtz, and Spohrer, J. C., Eds.,

Norwood, NJ Ablex Publishing, 1993, pp. 42-61.

[45] Davies, S. P., "Models and theories of programming strategy", International

Journal of Man-Machine Studies, vol. 39, no. 2, 1993, pp. 237-267.

[46] Davis, J. S., "Chunks: a basis for complexity measurement", Information

Processing & Mgt., vol. 20, no. 1-2, 1984, pp. 119-127.

[47] Detienne, F., "Difficulties in designing with an object-oriented language: an

empirical study", D. Diaper,D. Gilmore,G.Cockton, and B.Shacker (eds),

Human Computer Interaction, Proceedings of INTERACT'90, North Holland

1990, pp. 971-976.

[48] Driscoll, M. P., Psychology of Learning for Instruction, Allyn and Bacon,

2000.

[49] Ducasee, M., "A pragmatic survey of automatic debugging", in Proceedings

of 1st International Workshop on Automated and Algorithmic Debugging,

Linköping, Sweden, May 3-5 1993, pp. 1-15.

[50] Duncker, K., On problem solving, Washington, The American Psychological

Association, 1945.

[51] Ericsson, K. and Simon, H. A., Protocol Analysis: Verbal Reports as Data,

Cambridge, Mass, MIT Press, 1993.

www.manaraa.com

161

[52] Exton, C., "Constructivism and program comprehension strategies", in

Proceedings of the 10th International Workshop on Program

Comprehension, Paris, France, 27-29 June 2002, pp. 281-284.

[53] Fischer, G., McCall, R., Ostwald, J., Reeves, B., and Shipman, F., "Seeding,

evolutionary growth and reseeding: supporting the incremental development

of design environments", in Proceedings of the Conference on Computer-

Human Interaction (CHI'94), Boston, MA, 1994, pp. 292-298.

[54] Fischer, G. and Ostwald, J., "Knowledge management: problems, promises,

realities, and challenges", IEEE Intelligent Systems, vol. 16, no. 1,

January/February 2001, pp. 60-72.

[55] Fix, V., Wiedenbeck, S., and Scholtz, J., "Mental representations of

programs by novices and experts", in Proceedings of the Conference on

Human Factors and Computing Systems (INTERCHI'93), Amsterdam The

Netherlands, April 24-29 1993, pp. 74-79.

[56] Fowler, M., UML Distilled, Addison Wesley Longman, 1997.

[57] Fowler, M., Refactoring: Improving the Design of Existing Code, Addison-

Wesley, 1999.

[58] Frohmann, B., "Discourse analysis as a research method in library and

information science", Library and Information Science Research no. 16,

1994, pp. 119-138.

[59] Fu, W., "ACT-PRO: action protocol tracer -- a tool for analyzing discrete

action protocols ", Behavior Research Methods, Instruments, & Computers,

vol. 33, no. 2, 2001, pp. 149-158

www.manaraa.com

162

[60] Gagnon, G. J. and Collay, M., Design for Learning, Six Elements in

Constructivist Classrooms, Corwin Press Inc., 2001.

[61] Gallis, H., Arisholm, E., and Dyba, T., "A transition from partner

programming to pair programming - an industrial case study", in Proceedings

of Pair Programming Workshop in 17th annual ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA),

Seatte, USA, 2002, pp. position paper.

[62] Gallis, H., Arisholm, E., and Dyba, T., "An initial framework for research on

pair programming", in Proceedings of the Second International Symposium

on Empirical Software Engineering, Rome, Italy, September 30 - October 1

2003, pp. 132-142.

[63] Gamma, E. and Kent, B., Contributing to Eclipse: Principles, Patterns, and

Plugins, Addison-Wesley 2003.

[64] Gardner, H., Frames of Mind: The Theory of Multiple Intelligences, Basic

Books, 1993.

[65] Gero, J. S. and McNeill, T. M., "An approach to the analysis of design

protocols", Design Studies, vol. 19, no. 1, 1998, pp. 21-61.

[66] Gilmore, D. J., "Expert programming knowledge: a strategic approach",

Psychology of Programming 1990, pp. 223-233.

[67] Glasser, W., The Quality School, Perennial, 1998.

[68] Gnatz, M., Kof, L., Prilmeier, F., and Seifert, T., "A practical approach of

teaching software engineering", in Proceedings of 16th Conference on

www.manaraa.com

163

Software Engineering Education and Training, Madrid, Spain, March 20-22

2003, pp. 140-147.

[69] Gould, J. D., "Some psychological evidence on how people debug computer

programs", International Journal of Man-machine Studies, vol. 7, no. 1,

1975, pp. 151-181.

[70] Gray, W. D. and Anderson, J. R., "Change episodes in coding: when and

how do programmers change their code?" in Empirical Studies of

Programmers, Olson, G. M., Sheppard, S., and Soloway, E., Eds., Norwood,

NJ Ablex Publishing Corporation, 1987, pp. 185-197.

[71] Gruber, T., "A translation approach to portable ontologies", Knowledge

Acquisition, vol. 5, no. 2, 1993, pp. 199-220.

[72] Gugerty, L. and Olson, G. M., "Debugging by skilled and novice

programmers", in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, Boston, Massachusetts, United States, 1986, pp.

171-174.

[73] Hedin, G., Bendix, L., and Magnusson, B., "Introducing software engineering

by means of Extreme Programming", in Proceedings of International

Conference on Software Engineering, Portland, Oregon May 3-10 2003, pp.

586 - 593.

[74] Henninger, S., "Tools supporting the creation and evolution of software

development knowledge", in Proceedings of the International Conference on

Automated Software Engineering (ASE'97), Incline Village, Nevada, 1997,

pp. 46-53.

www.manaraa.com

164

[75] Hissam, S., "Case study: correcting system failure in a COTS information

system, SET monographs on the use of commercial software in government

systems", Technical Report, Carnegie Mellon University 1997.

[76] Hollan, J., Hutchins, E., and Kirsch, D., "Distributed cognition: toward a new

foundation for human-computer interaction research", ACM Transactions on

Computer-Human Interaction, vol. 7, no. 2, 2000, pp. 174-196.

[77] Holt, R. W., Boehm-Davis, D. A., and Schultz, A. C., "Mental representations

of programs for student and professional programmers", in Empirical Studies

of Programmers: Second Workshop, Olson, G. M., Sheppard, S., and

Soloway, E., Eds., E Norwood, NJ Ablex Publishing Co., 1987, pp. 33-46.

[78] Horowitz, S., Reps, T., and Binkley, D., "Interprocedural slicing using

dependence graphs", ACM Transactions on Programming Languages and

Systems vol. 12, no. 1, January 1990, pp. 26-60.

[79] Huitt, W., "Bloom et al.'s taxonomy of the cognitive domain: educational

psychology interactive", Valdosta, GA: Valdosta State University,

http://chiron.valdosta.edu/whuitt/col/cogsys/bloom.html, 2004.

[80] IEEE-CS and ACM, "Software Engineering Education Knowledge (SEEK):

Second Draft, available at http://sites.computer.org/ccse, Dec", 2002.

[81] Javadoc, "Javadoc website", http://java.sun.com/j2se/javadoc, 2006.

[82] Jensen, E., Brain-based Learning: The New Science of Teaching and

Training, Revision Edition ed., Brain Store Inc, 2000.

[83] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. M., Hoaglin, D.

C., Eman, K. E., and Rosenberg, J., "Preliminary guidelines for empirical

www.manaraa.com

165

research in software engineering", IEEE Transactions on Software

Engineering, vol. 28, no. 8, 2002, pp. 721-734.

[84] Ko, A. J. and Myers, B. A., "Development and evaluation of a model of

programming errors", in Proceedings of IEEE Symposia on Human-Centric

Computing Languages and Environments, Auckland, New Zealand, October

2003, pp. 7-14.

[85] Koenemann, J. and Robertson, S., "Expert problem solving strategies for

problem comprehension", in Proceedings of the Conference on Human

Factors and Computing Systems (CHI'91), New Orleans, LA, April 27 - May

2 1991, pp. 125-130.

[86] Kozaczynski, W., Ning, J., and Engberts, A., "Program concept recognition

and transformation", IEEE Transactions on Software Engineering, vol. 18,

no. 12, 1992, pp. 1065-1075.

[87] Larman, C. and Basili, V., "Iterative and incremental development: a brief

history", IEEE Computer June 2003, pp. 47-56.

[88] Lehman, M., Perry, D., and Ramil, J., "Implications of evolution metrics on

software maintenance", in Proceedings of International Conference on

Software Maintenance, Bethesda, Maryland, 1998, pp. 208.

[89] Letovsky, S., "Cognitive Processes in Program Comprehension", in

Empirical Studies of Programmers, Albex, 1986, pp. 58-79.

[90] Letovsky, S. and Soloway, E., "Delocalized plans and program

comprehension", IEEE Software, vol. 19, no. 3, May 1986, pp. 41 - 48.

www.manaraa.com

166

[91] Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E., "Mental models and

software maintenance", in Empirical Studies of Programmers, Soloway, E.

and Iyengar, S., Eds., Norwood N.J. Albex Publisher Coop., 1986, pp. 80 -

98.

[92] Lloyd, P., Lawson, B., and Scott, P., "Can concurrent verbalization reveal

design cognition?" Design Studies, vol. 16, 1995, pp. 237-159.

[93] Martin, R. C., Agile Software Development, Principles, Patterns, and

Practices, Maassachusettes, Addison Wesley, 2002.

[94] Mateis, C., Stumptner, M., Wieland, D., and Wotawa, F., "Model-based

debugging of Java programs", in Proceedings of 4th International Workshop

of Automated and Algorithmic Debugging, 2000, pp. 32-40.

[95] Mayer, R., "The psychology of how novices learn computer programming",

ACM Computing Surveys, vol. 13, no. 1, 1981, pp. 121-141.

[96] McDowell, C., Werner, L., Bullock, H., and Fernald, J., "The effects of pair-

programming on performance in an introductory programming course", in

Proceedings of SIGCSE Technical Symposium on Computer Science

Education, Cincinnati, Kentucky, 2002, pp. 38-42.

[97] Mckeithen, K. B., Reitman, J. S., Reuter, H. H., and Hirtle, S. L., "Knowledge

organization and skill differences in computer programmers", Cognitive

Psychology, vol. 13, no. 307-325, 1981.

[98] Meijer, J. and Riemersma, F., "Analysis of solving problems", Instructional

Science, vol. 15, 1986, pp. 3-19.

www.manaraa.com

167

[99] Microsoft, "Microsoft Producer for Microsoft Office Powerpoint 2003",

http://www.microsoft.com/windows/windowsmedia/technologies/producer.as

px,

[100] Mosemann, R. and Wiedenbeck, S., "Navigation and comprehension of

programs by novice programmers", in Proceedings of the 9th International

Workshop on Program Comprehension, Toronto, Canada, May 12 - 13

2001, pp. 79-88.

[101] Muller, M. and Tichy, W., "Case study: extreme programming in a

university environment", in Proceedings of 23rd International Conference on

Software Engineering, Toronto, Canada, May 2001, pp. 537-544.

[102] Nawrocki, J. and Wokciechowski, A., "Experimental evaluation of pair

programming", in Proceedings of European Software Control and Metrics

(Escom), London, England, April 2001, pp. 269-276.

[103] Newell, A. and Simon, H. A., Human Problem Solving, New York, Prentice-

Hall, 1972.

[104] Nitko, A. J., Educational Assessment of Students, 2nd ed., Englewood

Cliffs, Prentice-Hall, 1996.

[105] Nosek, J. T., "The case for collaborative programming", Communications of

the ACM, vol. 41, no. 3, 1998, pp. 105-108.

[106] Novak, J. D., Learning, Creating, and Using Knowledge, Mahwah, NJ,

Lawrence Erlbaum Associates, 1998.

www.manaraa.com

168

[107] Olson, G. M., Olson, J. S., Carter, M. R., and Storrosten, M., "Small group

design meetings: an analysis of collaboration", Human Computer Interaction,

vol. 7, no. 2, 1992, pp. 347-374.

[108] Orne, M. T., "Demand characteristics and the concept of quasi-controls", in

Artifact in Behavioral Research, New York, NY Academic Press, 1969, pp.

143-179.

[109] Ostwald, J., Knowledge Construction in Software Development: The

Evolving Artifact Approach, University of Colorado, Ph.D. Dissertation,

Boulder, USA, 1996.

[110] Parnas, D. L., "The limits of empirical studies of software engineering", in

Proceedings of the International Symposium on Empirical Software

Engineering, Nara, Japan, 2003, pp. 2-5.

[111] Pennington, N., "Comprehension strategies in programming", in Empirical

Studies of Programmers: Second Workshop,, G. M. Olson, S. Sheppard,

and Soloway, E., Eds., Norwood, NJ: Ablex. Publisher Coop., 1987, pp. 100-

113.

[112] Perkins, D. N. and Martin, F., "Fragile knowledge and neglected strategies

in novice programmers", in Empirical Studies of Programmers, Soloway, E.

and Iyengar, S., Eds., Norwood N.J. Albex Publisher Coop., 1986, pp. 213-

229.

[113] Peslak, A., "Teaching software engineering through collaborative

methods", Issues in Information Systems, vol. 1, no. 1, 2004, pp. 247-253.

www.manaraa.com

169

[114] Piaget, J., The Construction of Reality in the Child, New York, Basic Books,

1954.

[115] Rajlich, V., "Program comprehension as a learning process", in

Proceedings of the First IEEE International Conference on Cognitive

Informatics, Calgary, Canada, 2002, pp. 343-350.

[116] Rajlich, V. and Bennett, K. H., "A staged model for the software lifecycle",

Computer, vol. 33, no. 7, July 2000, pp. 66-71.

[117] Rajlich, V., Doran, J., and Gudla, R., "Layered explanations of software: a

methodology for program comprehension", in Proceedings of the Third

International Workshop on Program Comprehension, Washington, D.C.,

1994, pp. 46-52.

[118] Rajlich, V. and Gosavi, P., "Incremental change in Object-Oriented

Programming", IEEE Software, vol. July/August, 2004, pp. 62-69.

[119] Rajlich, V. and Xu, S., "Analogy of incremental program development and

constructivist learning", in Proceedings of the Second IEEE International

Conference on Cognitive Informatics, London, UK, 2003, pp. 142-150.

[120] Rajlich, V. and Xu, S., "Constructivist learning during software

development", ACM TAAS Special Issue on CI and Autonomic Computing

no. Submitted, 2006.

[121] Ramalingam, V. and Wiedenbeck, S., "An Empirical Study of Novice

Program Comprehension in the Imperative and Object-Oriented Styles",

Empirical Studies of Programmers, Ablex Publishing Corporation,

Norwood,NJ 1997, pp. 124-139.

www.manaraa.com

170

[122] Robbin, J. E., Cognitive Support Features for Software Development Tools,

Ph.D. dissertation, University of California, Irvine, USA, 1999.

[123] Robbins, J. E., Hilbert, D. M., and Redmiles, D. F., "Extending design

environments to software architecture design", Automated Software

Engineering, vol. 5, no. 3, 1998, pp. 261-290

[124] Robillard, P. N., "The role of knowledge in software development",

Communications of ACM, vol. 42, no. 1, January 1999, pp. 87-92.

[125] Robillard, P. N., Detienne, F., d'Astous, P., and Visser, W., "Measuring

cognitive activities in software engineering", in Proceedings of the 20th

International Conference on Software Engineering, Kyoto, Japan, April 19-25

1998, pp. 292-300.

[126] Rosenthal, R., "The effects of early data returns on data subsequently

obtained by outcome biased experimenter", Sciometry, vol. 26, no. 4, 1963,

pp. 497-493.

[127] Rosenthal, R., Experimenter Effects in Behavioral Research, New York,

NY, Appleton Century Crofts, 1966.

[128] Rugaber, S., "The use of domain knowledge in program understanding",

Annals of Software Engineering, vol. 9, 2000, pp. 143-192.

[129] Rugaber, S., Ornburn, S. B., and LeBlanc, R. J., "Recognizing design

decisions in programs", IEEE Software, vol. 7, no. 1, January 1990, pp. 46-

54.

[130] Sayyad-Shirabad, J. and Lethbridge, T., "A little knowledge can go a long

way towards program understanding", in Proceedings of Fifth International

www.manaraa.com

171

Workshop on Program Comprehension, Dearborn, MI, May 28-30 1997, pp.

19-28.

[131] Schneider, J.-G. and Johnston, L., "eXtreme Programming at universities -

an educational perspective ", in Proceedings of 25th International

Conference on Software Engineering, Portland, Oregon, May 3-10 2003, pp.

594-599.

[132] Shaft, T. M. and Vessey, I., "The relevance of application domain

knowledge: the case of computer program comprehension", Information

Systems Research, vol. 6, 1995, pp. 286-299.

[133] Shepherd, A., "Hierarchical task analysis and training decisions",

Programmed Learning and Educational Technology, vol. 22, 1985, pp. 162-

176.

[134] Shneiderman, B., "Exploratory experiments in programmer behavior",

International Journal of Computer and Information Sciences, vol. 5, no. 2,

June 1976, pp. 123-143.

[135] Shneiderman, B., "Measuring computer program quality and

comprehension", International Journal of Man-Machine Studies, vol. 9, 1977,

pp. 465--478.

[136] Shneiderman, B., Software Psychology, Winthrop Publishers Inc., 1980.

[137] Shneiderman, B. and Mayer, R., "Syntactic/semantic interactions in

programmer behaviour: a model and experimental results", International

Journal of Computer and Information Sciences, vol. 8, no. 3, 1979, pp. 219 -

238.

www.manaraa.com

172

[138] Sim, E. S. and Storey, M.-A. D., "A structured demonstration of program

comprehension tools", in Proceedings of Seventh Working Conference on

Reverse Engineering, Brisbane, Australia, November 23 - 25 2000, pp. 184-

193.

[139] Singer, J., Elves, R., and Storey, M.-A., "NavTracks: supporting navigation

in software", in Proceedings of 13th International Workshop on Program

Comprehension, St. Louis, MO, USA, 15-16 May 2005, pp. 173-175.

[140] Soloway, E., "What to do next: meeting the challenge of programming-in-

the-large", Empirical Studies of Programmers, Ablex Publishing Corporation,

Norwood,NJ 1986, pp. 263-268.

[141] Soloway, E. and Ehrlich, K., "Empirical studies of programming

knowledge", IEEE Transactions on Software Engineering, vol. 10, no. 5,

September 1984, pp. 595-609.

[142] Soloway, E., Pinto, J., Letovsk, S., Littman, D. C., and Lampert, R.,

"Design documentation to compensate for delocalized plans",

Communication of the ACM, vol. 31, no. 11, 1988, pp. 1259-1267.

[143] Sommerville, I., Software Engineering, Addison-Wesley, 1996.

[144] SouceForge.net, "JAdvisor: http://jadvisor.sourceforge.net/",

[145] Spohrer, J. G. and Soloway, E., "Analyzing the high frequency bugs in

novice programs", in Empirical Studies of Programmers, Soloway, E. and

Iyengar, S., Eds., Norwood N.J. Albex Publisher Coop., 1986, pp. 230-251.

[146] Srikanth, H., Williams, J. G., Wiebe, E., Miller, C., and Balik, S., "On pair

rotation in the computer science course", in Proceedings of the 17th

www.manaraa.com

173

Conference on Software Engineering Education and Training, Norfolk,

Virginia March 1-3 2004, pp. 144-149.

[147] Storey, M.-A. D., Fracchia, F. D., and Müller, H. A., "Cognitive design

elements to support the construction of a mental model during software

exploration", The Journal of Systems and Software, vol. 44, no. 3, 1999, pp.

171--185.

[148] Stotts, P. D., Williams, L. A., Nagappan, N., Baheti, P., Jen, D., and

Jackson, A., "Virtual teaming: experiments and experiences with distributed

pair programming", in Proceedings of Third XP and Second Agile Universe

Conference, New Orleans, LA, August 10-13 2003, pp. 129-141.

[149] Tiene, D. and Ingram, A., Exploring Current Issue in Educational

Technology, New York, NY, McGraw-Hill, 2001.

[150] Tuck, D., France, R., and Rumpe, B., "Limitations of agile software

processes", in Proceedings of the Third International Conference on

Extreme Programming and Flexible Processes in Software Engineering

(XP2002), Alghero, Italy, 2002, pp. 43-46.

[151] Uchida, S., Monden, A., Iida, H., Matsumoto, K., Inoue, K. and Kudo, H,

"Debugging process models based on changes in impressions of software

modules", in Proceedings of International Symposium on Future Software

Technology, Guiyang, China, August 2000, pp. 57-62.

[152] Vans, A., von Mayrhauser, A., and Somlo, G., "Program understanding

behavior during corrective maintenance of large-scale software",

www.manaraa.com

174

International Journal of Human-Computer Studies, vol. 51, no. 1, July 1999,

pp. 31-70.

[153] Vessey, I., "Expertise in debugging computer programs", International

Journal of Man-Machine Studies, vol. 18, 1983, pp. 459-494.

[154] Visser, W., "Strategies in programming programmable controllers: a field

study on professional programmer", G.M.Olson, S.Sheppard and E.Soloway

(eds), Empirical studies of programmers: second workshop, Ablex Publishing

Corporation, Norwood,NJ 1987, pp. 217-230.

[155] von Glasersfeld, E., Radical Constructivism, London, England, The Falmer

Press, 1995.

[156] Von Mayrhauser, A. and Lang, S., "A coding scheme to support analysis of

software comprehension", IEEE Transactions on Software Engineering, vol.

25, no. 4, 1999, pp. 526-540.

[157] von Mayrhauser, A. and Vans, A. M., "Comprehension processes during

large scale maintenance", in Proceedings of International Conference of

Software Engineering, Sorrento, Italy, May 1994, pp. 39-48.

[158] Von Mayrhauser, A. and Vans, A. M., "Identification of dynamic

comprehension processes during large scale maintenance", IEEE

Transactions on Software Engineering, vol. 22, no. 6, 1996, pp. 424-437.

[159] Von Mayrhauser, A. and Vans, A. M., "Program understanding behavior

during debugging of large scale software", in Proceedings of Seventh

Workshop on Empirical Studies of Programmers, Alexandria, VA, Oct 24- 26

1997, pp. 157–179.

www.manaraa.com

175

[160] Von Mayrhauser, A. and Vans, A. M., "Program understanding behavior

during adaptation of large scale software", in Proceedings of the Sixth

International Workshop on Program Comprehension, Los Alamitos, CA,

1998, pp. 164-172.

[161] Vygotsky, L. S., Mind in Society, Cambridge, MA, Harvard University Press,

1978.

[162] Wallenstein, A., Cognitive Support in Software Engineering Tools: A

Distributed Cognition Framework, Ph.D. Dissertation, Simon Fraser

University, 2002.

[163] Wallenstein, A., "Observing and measuring cognitive support: steps toward

systematic tool evaluation and engineering", in Proceedings of the 11th

International Workshop on Program Comprehension, Portland, Oregon,

2003, pp. 185-195

[164] Wang, Y., "On cognitive informatics", in Proceedings of the First IEEE

International Conference on Cognitive Informatics, Calgary, AB, 2002, pp.

34-42.

[165] Wang, Y., "On the cognitive informatics foundations of software

engineering", in Proceedings of the 3rd IEEE International Conference on

Cognitive Informatics, Victoria, BC, 2004, pp. 22-31.

[166] Watson, J. B., "Is thinking merely the action of language mechanism?"

British Journal of Psychology, vol. 11, 1920, pp. 87-104.

www.manaraa.com

176

[167] Wiedenbeck, S. and Ramalingam, V., "Novice comprehension of small

programs written in the procedural and object-oriented styles", International

Journal of Human-Computer Studies, vol. 51, no. 1, July 1999, pp. 71-87.

[168] Wilde, N. and Scully, M., "Software reconnaissance: mapping program

features to code", Software Maintenance: Research and Practice, vol. 7,

1995, pp. 49-62.

[169] Williams, J. G. and UpChirch, R. L., "In support of student pair-

programming", in Proceedings of the 32th SIGCSE Technical Symposium on

Computer Science Education, Charlotte, NC, February 21-25 2001, pp. 327 -

331.

[170] Williams, L., Kessler, R., Cuningham, W., and Jeffries, R., "Strengthening

the case for pair-programming", IEEE Software July/August 2000, pp. 19-25.

[171] Williams, L., McDowell, C., Nagappan, N., Fernald, J., and Werner, L.,

"Building pair programming knowledge through a family of experiments", in

Proceedings of International Symposium on Empirical Software Engineering,

Rome, Italy, September 29-October 4 2003, pp. 143-152.

[172] Xu, S., "A cognitive model for program comprehension", in Proceedings of

the 3rd ACIS International Conference on Software Engineering, Research,

Management & Applications (SERA2005), Mount. Pleasant, Michigan,

August 11-13 2005, pp. 392-398.

[173] Xu, S. and Rajlich, V., "Cognitive process during program debugging", in

Proceedings of the Third IEEE International Conference on Cognitive

Informatics, Victoria, BC, August 16-17 2004, pp. 176-182.

www.manaraa.com

177

[174] Xu, S. and Rajlich, V., "Dialog-based protocol: an empirical research

method for cognitive activity in software engineering", in Proceedings of the

4th ACM/IEEE International Symposium on Empirical Software Engineering,

Noosa Heads, Queensland, November 17-18 2005.

[175] Xu, S. and Rajlich, V., "Pair Programming in Graduate Software

Engineering Course Projects", in Proceedings of 2005 ASEE/IEEE Frontiers

in Education Conference (FIE 2005), Indianapolis, Indiana, October 19-22

2005, pp. p.FIG-7-FIG-12.

[176] Xu, S. and Rajlich, V., "Programmer learning during software development:

empirical study using dialog-based protocols and self-directed learning

theory", IEEE Transactions on Software Engineering, vol. submitted, 2006.

[177] Xu, S., Rajlich, V., and Marcus, A., "An empirical study of programmer

learning during incremental software development", in Proceedings of the

4th IEEE International Conference on Cognitive Informatics, Irvine,

California, August 8-10 2005, pp. 340-349.

[178] Yin, R. K., Case Study Research: Design and Methods, Thousand Oaks,

CA, Sage Publications Inc., 1994.

[179] Yoon, B. and Garcia, O. N., "Cognitive activities and support in debugging",

in Proceedings of 4th Annual Symposia on Human Interaction with Complex

System, Los Alamitos, CA, 1998, pp. 160-169.

[180] Zayour, I., Reverse Engineering: A Cognitive Approach, A Case Study and

a Tool, Ph.D. Dissertation, University of Ottawa, Ottawa, Canada, 2002.

www.manaraa.com

178

ABSTRACT

COGNITIVE ASPECTS OF SOFTWARE ENGINEERING PROCESSES

by

SHAOCHUN XU

August 2006

Advisor: Dr. Vaclav Rajlich

Major: Computer Science

Degree: Doctor of Philosophy

Software engineering activities are to process a large amount of

knowledge and therefore, the cognitive process is mainly involved. Studying the

cognitive process involved in software engineering can greatly help us to

understand the whole process and to improve software engineering research.

In order to study the cognitive process, we developed an empirical

method that includes dialog-based protocol and self-directed learning theory.

The dialog-based protocol is based on the analysis of the dialog that occurs

between programmers in pair programming. It is an alternative to the common

think-aloud protocol and it may minimize the Hawthorne and placebo effects.

The self-directed learning theory is based on the constructivist learning theory

and the Bloom taxonomy. It captures the specifics of the programmer’s cognitive

activities and provides an encoding scheme used in analyzing the empirical data.

We conducted a case study of expert and intermediate programmers

during incremental software development. Compared to intermediate

www.manaraa.com

179

programmers, experts discussed more domain concepts at a greater length

before starting to write code. Experts mostly concentrated on one concept at one

time, while intermediate programmers often discussed several concepts

simultaneously. Experts were willing to reconsider and correct obsolete design

decisions, while intermediate programmers retained all design decisions.

Experts had more absorption activities at higher Bloom levels such as analysis

and synthesis, while intermediate programmers had more absorption activities at

lower Bloom levels such as comprehension and application. Experts spent more

time analyzing the knowledge and generating test cases, while intermediate

programmers spent more time learning the knowledge.

We also conducted a case study on program debugging, and found that

programmers apply the cognitive activities at all six Bloom levels and move from

lower one to upper one in order to make update. Program debugging is a more

complex activity than incremental software development.

A case study on pair programming in software evolution class projects

was also performed. The results of the case study showed that paired students

completed their change request tasks faster and with higher quality than

individuals. They also wrote less lines of code and used more meaningful

variable names.

www.manaraa.com

180

AUTOBIOGRAPHICAL STATEMENT

SHAOCHUN XU

Shaochun Xu is a Ph.D. candidate in the Department of Computer

Science at Wayne State University in Detroit. He was born in Hubei Province,

China. He received his Bachelor of Science degree from Department of Geology,

Peking University, China in 1984 and Master of Science degree in 1987. He got

a Ph.D. in Geology from Liege University, Liege, Belgium in 1997. After he

completed all the undergraduate requirements in Bachelor of Computer Science

in the University of Manitoba, Canada, he was admitted into Master of Science in

Computer Science program in the University of Windsor, Canada. He got his

Master degree in Computer Science in 2001.

He is now an assistant professor in Algoma University College, Laurentian

University, Sault Ste. Marie, Canada. He teaches Data Structures, Software

Engineering, Introduction to Computer Science and Introduction to Database

Programming courses.

Before coming to Wayne State, he has conducted a few years

postdoctoral research in the Department of Geological Science of the University

of Manitoba, and has been an instructor in the School of Computer Science in

University of Windsor.

His current research interests include software maintenance and cognitive

process in software engineering.

