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CHAPTER 1

INTRODUCTION

1.1 Background

Software is a human-intensive technology and the studies of cognitive 

processes in software engineering can shed light on many software engineering 

problems [125] [39]. Software engineering deals with distinct processes, such as 

requirements analysis, software design, software evolution, program debugging, 

software reuse, software maintenance and program documentation. A common 

characteristic of all these processes is in the method employed in handling a large 

amount of knowledge that is distributed over many knowledge domains, such as the 

problem domain, program domain, and programming techniques domain [31]. The 

program itself is also a large repository of this knowledge and may contain 

knowledge that is not available elsewhere, as documented in [86]. It also contains 

knowledge of all design decisions that were made during the program development 

and the consequent program evolution [129]. 

When either evolving or maintaining the program, it is necessary to recover 

that knowledge; otherwise maintenance or evolution will be impossible. It is also 

necessary to communicate the knowledge to all new programmers who are 

engaged in software project. Although the knowledge is embedded in the program, 

it cannot be easily recovered since the bits of knowledge are delocalized into

different parts of the program. Moreover, the consequences of the decisions, rather 
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than the decisions themselves, appear in the code. In many ways, the recovery of 

knowledge from the code is similar to that of solving a puzzle, in that it is laborious 

and error prone. Some knowledge might not be able to be recovered. Loss of 

programming knowledge was identified as a leading cause of code decay [28]. 

Forward engineering is used to process the domain knowledge and turn it 

into design decisions that will be reflected in the source code (i.e. encode the 

knowledge into the code), whereas program understanding and reverse engineering 

are used to decode this knowledge from legacy systems and their documents. An 

example of forward engineering is the process of software development. Therefore, 

the cognitive process is the center of all software engineering processes to such 

extent that understanding the cognitive process and documenting the knowledge 

during software engineering processes becomes a critical and practical issue. 

Empirical studies have been applied in software engineering research [9]. 

Some of these issues are of great importance, including how to conduct the 

experiments, how to capture the data, and how to analyze the data [83]. Without an 

effective way to collect and capture the data, the data collected might be incomplete 

or incorrect. Conversely, an accurate coding scheme is critical to analyze the data 

and to explain the experiment result. 

The empirical approaches, which have been commonly used by cognitive 

scientists, include protocol analysis, task analysis, and discourse analysis [51, 58, 

133]. 

Think-aloud protocol analysis, one of protocol analysis techniques, uses a 

single subject who verbalizes his/her thoughts while performing a task. Think-aloud 
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protocol analysis has been used in social sciences for many years and is now 

increasingly common in software engineering research [158]. However, there are 

some deficiencies in this approach. These include the placebo effect [127] and the 

Hawthorne effect [1]. For that reason, the researchers have to search for additional 

empirical methods that may offer relief from these two problems.

There are many cognitive theories which have been applied and used in 

studying cognitive process in software engineering, including text understanding [4], 

knowledge modeling, problem-solving and learning. Particularly in the area of 

program comprehension, many theories have been proposed. Examples of these 

include the top-down, and bottom-up theories [24]. However, previous theories and 

models might not be able to explain the important aspects of software engineering 

process, and quite a lot cannot be used to explain well the differences between 

expert and novice programmers. Therefore, a new model should be developed to 

meet such a need.

There is some research on how experts perform programming tasks (such as 

program comprehension, program debugging etc) that differ from novices. However, 

none of this research was performed from the point view of actual cognitive 

activities. 

1.2 Motivation and Hypotheses

In order to better understand the cognitive aspects of software engineering 

and the nature of program knowledge, several approaches should be taken: 1) we 
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study in detail the most common protocol research method: think-aloud protocol, to 

see the advantages and disadvantages, and to see if we can improve that method 

in order to collect more complete and accurate empirical data; 2) we study the 

existing recording methods such as tape recording and videotaping, to find a better 

way to document the programming process; 3) we study the existing cognitive 

theories in order to build a more reasonable and useful model to explain the 

cognitive process in software engineering 4) then we use our new approach 

(including new protocol, new recording method, and new code scheme) to conduct 

a pilot study and further case studies on selected software engineering processes 

(incremental software development, program debugging, software evolution), in 

order to understand the cognitive process and to evaluate our new approach.

The type hypotheses for this research are:

1. “There are  better ways than think-aloud protocol to study the cognitive activities 

in software engineering”

2. “The combination of several learning theories can be used to better study the 

cognitive activities used during software engineering process”

3. “Intermediate programmers follow a similar cognitive process during incremental 

software development” 

4. “Experts and intermediate programmers follow different cognitive processes 

when they perform incremental software development”

5. “The method we use for incremental software development can be also applied 

in studying software evolution and program debugging”
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1.3 Contributions

We studied the think-loud protocol and discovered several defects. Based on 

the idea of pair programming [10], we proposed a dialog-based protocol for 

cognitive research in software engineering, since the majority of software 

engineering tasks can be done with pairs. In pair programming, where two 

programmers work on a programming problem using only one computer, the 

technique requires a constant dialog between them. This dialog can be 

unobtrusively recorded to provide evidence for programmer cognitive process. The 

dialog-based protocol can greatly reduce the negative effects of the think-aloud 

protocol.

We also discovered a new recording method in which screen-capturing 

software with voice recording can provide more complete and higher quality data. 

Software screen-capturing records the programming process and communication 

between the two programmers. 

We extended the constructivist learning theory and refined the cognitive 

process into four cognitive activities: absorption, reorganization, denial and 

expulsion. By combining the extended constructivist learning theory and Bloom’s 

taxonomy of cognitive domain, we proposed a new cognitive model called self-

directed learning. The extended constructivist learning classifies the cognitive 

activities and the Bloom taxonomy assesses their complexity with six levels 

(knowledge, comprehension, application, analysis, synthesis, evaluation). The self-

directed learning theory provides an encoding scheme used to analyze the 
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empirical data. This model forms a basis for study of the cognitive process involved 

in various software engineering processes.

With the unified cognitive model, we can study the distribution of the four 

cognitive activities and six Bloom levels in order to distinguish various software 

engineering processes. We can also use this model to understand the cognitive part 

of these processes and to improve software engineering practice through this better 

understanding. It can also be used to study the cognitive differences and gaps 

between novice and expert programmers during their various software engineering 

activities.

We used our new empirical approach, including the dialog-based protocol, 

software screen-capturing, and the self-directed learning theory, to study cognitive 

activities by conducting experiments on 10 intermediate level pairs. We gave 

particular attention to the differences between theirs’ and the experts’ learning. 

Compared to intermediate programmers before starting to write their code, experts 

discussed more domain concepts and were more willing to reconsider and correct 

obsolete design decisions. Experts mostly concentrated on one concept at one 

time, while intermediate programmers often discussed several concepts 

simultaneously.  We also found that the cognitive process applied by experts is 

different from that of intermediate programmers.

We used this approach to study program debugging. We confirmed that the 

self-directed learning model can also be used to study the cognitive process during 

program debugging. 
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We studied pair programming used in software evolution in graduate 

software engineering project. We applied the pair programming in software 

evolution project by asking students to make incremental changes in an open 

project. We found that paired programmers completed the change request task with 

higher quality and shorter time compared to programmers who worked individually.

We think that our empirical study can also provide some knowledge for tool 

development, i.e. it could lead towards a new generation of documentation systems 

that could be better used to capture the program knowledge during software 

development and maintenance, and in turn improve program understanding and 

reduce maintenance costs. This approach can also provide some guidance for 

education and training purposes.

This study will also shed some light on the different philosophical 

understandings (learning view) of software engineering processes, which in turn 

improve the efficiency of software development, program debugging and program 

comprehension, and the quality of software produced.

1.4 Organization of the Dissertation

This dissertation consists of nine chapters. Figure 1.1 represents the 

roadmap to the dissertation. The rectangles represent the chapters of the thesis; 

the arrows represent the relation between the chapters.

Chapter 2 reviews the related work. It provides a summary of previous work 

in cognitive research in incremental software development, program debugging and 
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program comprehension. We also reviewed cognitive research methods, such as 

think-aloud protocol, recording methods and code schemes. The review on related 

cognitive theories, particularly the constructivist learning and Bloom’s taxonomy of 

cognitive domain is also included in this chapter.

Chapter 3 describes the methods used for our research. A novel empirical 

research method: dialog-based protocol is given in detail. We also make a detailed 

comparison with think-aloud protocol. In chapter 3, we also explain the recording 

methods which are used for our experiment, including videotaping and software 

screen–capturing.

Chapter 4 outlines the self-directed learning model, a new code scheme, 

based on extended constructivist learning theory and Bloom’s taxonomy. A 

comparison with some existing models is also discussed.

Chapter 5 covers the detailed case study on incremental software 

development, where we apply our novel empirical approach.  We describe the 

detailed case study design and case study result.  

Chapter 6 describes the case study on program debugging, in which we 

study the cognitive process using the self-directed learning theory.
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Chapter 3
Research 
Methods

Chapter 4
Self-Directed 
Learning

Chapter 2
Previous Work

Chapter 5
Case Study on 
Incremental Software 
Development

Chapter 6
Case Study on 
Program 
Debugging

Chapter 7
Case Study on 
Software 
Evolution

Chapter 8
Evaluation of the 
Approach

Chapter 9
Conclusions and 
Future Work

Figure 1.1:  Roadmap to the thesis
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Chapter 7 covers the case study on software evolution, in which we conduct 

experiments with pair programming and solo programming, and then compare the 

experimental results. We also discuss the survey result on pair programming in this 

chapter.

Chapter 8 surveys the strengths and weaknesses of our empirical method, 

including the dialog-based protocol, software screen-capturing and self-directed 

learning theory. 

Chapter 9 concludes the thesis. It summarizes our research results and 

provides some potential future work.

Three appendixes are attached in the thesis. One is for the pilot study on 

incremental software development; one for all the detailed data for the case study

on incremental software development; one for the case study on program 

debugging.



www.manaraa.com

11

CHAPTER 2

PREVIOUS WORK

2.1 Cognitive Research in Software Engineering

The process of cognitive study of programming began during the 1970s. At 

that time, computer scientists were interested in testing or evaluating new 

programming tools by using methods from experimental psychology. One example 

is when Shneiderman (1976, 1980) [134, 136] proposed two independent variables 

to measure the performance when modifying a program. One was the use of 

meaningful mnemonic variable names and the other was the use of comments. His 

experimental result showed that the more complex the program, the more the use 

of mnemonic variable names helped in understanding it and the more functionally 

descriptive comments use, the faster the conversion of code to internal semantic 

structure [134, 136] [135].

The objective of the cognitive research approach during that period was to 

enrich the theoretical frameworks by borrowing theories from cognitive psychology 

and other disciplines [23]. Many theoretical frameworks were proposed during the 

time period between 1970s and 1980s. These can be classified into four categories.

 Understanding of natural language text: A few theories were proposed to 

explain the understanding of programs. For example to understand programs, 

Atwood and Ramsey applied the theory of Kintsch and van Dijk (1978) [4] and 

found that understanding a program is similar to understanding a text that includes
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recognizing letters and words, syntactic parsing of sentences, understanding the 

meaning of words and sentences, and incorporating the meaning of the text in other 

present knowledge.

 Learning: Cognitive and educational models were borrowed to explain the 

learning of programs. Mayer (1981) [95] used the learning theory to explain how a 

novice learns computer programming. He stated that two things happen as novices 

learn to program. First, beginning programmers acquire new information about the 

programming language and the rules that govern it. Secondly, they create a mental 

model of what happens inside the computer as the program statements get 

executed. 

 Modeling of knowledge: The schema theory was used to study how the 

experts organize their knowledge during program comprehension [141]. McKeithen 

et al. (1981) [97] applied the theory of information processing on knowledge 

organization in complex domains such as chess to the programming domain.

 Problem solving: Brooks (1977) [22] used the Newell and Simon (1972)’s 

theory of information processing [103] to study the cognitive mechanism in program 

design. He described the programming process as one of constructing mappings 

from a problem domain to an implementation domain, possibly through multiple 

levels. The work of Newell and Simon has long dominated the theories on problem 

solving in cognitive science.

During the first workshop on Empirical Studies of Programmers in 1986, one

paper presented by Curtis [40] and one paper presented by Soloway [140] played a 

great role to lead to continued research on theoretic direction. Since that time, 
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several cognitive models on program comprehension and on other processes have 

been proposed. Included are the top-down model, bottom-up model and as-needed 

model [90] [24]. Detailed research history will be described below. The theories from 

other disciplines have recently also been applied in explanation of software 

engineering processes. For example, Rajlich (2002) [115] and Exton (2002) [52]

applied constructivist-learning theory in program comprehension. Wang (2002) [164]

created the term, Cognitive informatics (CI), which is a multidisciplinary research area 

at the intersection of cognitive science, neural psychology, philosophy, software 

engineering, and other disciplines. Wang (2004) [165] also investigated the 

relationship between software engineering and cognitive informatics and developed a 

set of laws and cognitive properties for software engineering.

In addition to the cognitive models proposed during this period, there was 

much work completed in studying the activity of novices and experts in conjunction  

with the participation of some professionals in experimental studies or field 

studies[154] [47]. These recognized the various differences between novices and 

experts during software development that included knowledge, strategies they use 

etc. The differences between novices and experts during debugging and program 

comprehension were also investigated [72, 153]. 

Since our work mainly concentrates on selected software engineering 

processes (incremental software development, program debugging, and software 

evolution), we summarize the research on cognitive activity and tools according to 

individual software engineering processes as follows.
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2.1.1 Incremental Software Development

The classic software development process suggests a systematic sequential 

approach to software development that begins at the requirements specification 

level and progresses through analysis, design, coding, testing and maintenance. 

Although the incremental development process is been widely used, its history can 

be traced back to 1950s, when it was derived from several projects [87]. The 

incremental software development process has no sharp distinction between the

requirements specification and design in the so-called elaboration phase, and with 

iterations during the construction phase. Incremental software development and 

subsequent program evolution is a process where the programmers add one 

program property at a time. Programmers often start with an existing program or a 

program framework covering a fundamental functionality, and add and delete 

properties to or from it. 

Although Curtis (1988) [41] indicated that development of large software 

systems is composed of the activities of learning, communication and negotiation, 

not enough research has been done on the knowledge and cognitive process during 

incremental software development. A systematical analysis on the programming 

strategy was conducted by Davies (1993) [45], who suggested that what is needed 

is an explanation of programming skill that integrates ideas about knowledge 

representation with a strategic model, enabling one to make predictions about how 

changes in knowledge representation might give rise to particular strategies and to

the strategy changes associated with developing expertise. Fisher et al. (1994) [53]
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proposed a support for the incremental development based on a specific knowledge 

model, where seeding, evolution and reseeding are the three stages of knowledge 

capturing and transformation. Henninger (1997) [74] recognized that software 

development is a process involving various knowledge resources that continually 

change during the process. Ribbins (1999) [74] used several cognition theories, 

including Reflection-In-Action, to understand the design process and Wallenstein 

(2002) [162] proposed one framework for tool design based on distributed cognition 

theory. Ostward (1996) [109] discussed the social and evolutionary process 

involved in the knowledge construction during the software development process. 

Baragry (2000) [7] viewed the software engineering process using other disciplines 

such as metaphysics, epistemology, and psychology of cognition. In fact, software 

development is actually a process of knowledge construction. However, none of the 

above approaches evolve from constructivism and learning approaches. Recently, 

the analogy between constructivist learning and incremental software development 

process has been recognized by Rajlich and Xu (2003) [119], who identified four 

cognitive activities (absorption, denial, reorganization and expulsion) which 

correspond to incremental change, rejection of change request, refactoring and 

retraction, four programming activities.

The large volume of knowledge that must be manipulated during software 

development requires tool support. Although there are some suggested tools for 

program understanding and software design, most documentation tools generate 

documents after the programs have been completed, rather than documenting the 

knowledge on the fly during incremental development process. Some 
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documentation tools like Javadoc [81] extract knowledge from comments rather 

than from actual code. The design community has attempted to create methods and 

notations for capturing design information, but their attempts have failed to become 

standard practice [129]. One common approach is use of the expert system that 

requires domain experts to articulate their knowledge to create a knowledge base in 

general. This approach cannot capture specific knowledge used for the system, and 

therefore, will not be of much help in maintenance and evolution. Another approach 

is to design tools to document design decisions when they occur during design 

meetings. There are problems with this approach, the most obvious one being the 

excessive amount of time spent by designers in writing detailed notes about their 

discussion, and the problem of the notes being insufficiently rich to capture the full 

complexity of the design decisions. 

Ribbins (1999) [122] used cognition theories as guidance in the development 

of design tool features.  A tool was proposed to provide developers with efficient 

access to the group memory in a software development project [39]. Neither tool 

was built based on the cognitive activity, and therefore neither can capture the 

necessary and complete domain and programming knowledge. Knowledge can be 

more easily and correctly captured during the software development process. Such 

a tool should support the mental process of the incremental development and 

should be based on cognitive activities. Once we capture this knowledge, it will 

further accelerate software development. With the help of this captured knowledge, 

debugging and program maintenance would be made much easier.
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2.1.2 Program Debugging

Debugging refers to the combined process of testing and code correction. 

Errors can be made in various stages of software development or evolution, such as 

specification, implementation, or debugging of earlier errors [84]. Programmers 

spend a large part of their efforts in debugging [21]. In spite of the progress in the 

past years, debugging still remains labor-intensive and difficult [3]. 

Program debugging involves a complex cognitive process and requires 

comprehension of both program behavior and program structure. It is one of the 

most challenging areas of software engineering. In turn, debugging requires 

program comprehension and testing as the central tasks [24] [137].

Vessey (1983) [153] and Gould (1975) [69] conducted research in the 

cognitive aspects of debugging and characterized debugging as an iterative process 

of synthesizing, testing, and refining hypotheses about fault locations and repairs. 

Araki (1991) [3] provided a general discussion on the framework of debugging and 

emphasized the process of developing hypotheses. Bisant and Groninger 

(1993)[17] considered that fault detection involved two processes: a comprehension 

process and a fault location process. Model-based debugging techniques have 

been proposed by Ducasee (1993) [49] who emphasized that different parts of the 

program are perceived by the user as having different levels of reliability.

Yoon and Garcia (1998) [179] investigated how tools can help programmers 

obtain clues about the bugs. Two debugging techniques were identified: 

comprehension strategy and isolation strategy. In comprehension strategy, the 
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programmer searches for the difference between the program requirements and the 

programs’ actual behavior. In isolation strategy, the programmer makes hypotheses 

about the bugs and then searches for bug locations in the program. Van et al. 

(1999) [152] performed a field study on the understanding of software during 

corrective maintenance of large-scale software. They found that programmers work 

at all levels of abstraction (code, algorithm, application domain) at an approximately 

equal level and frequently switch between levels of abstraction. Three steps of the 

debugging process have been recognized by Uchina et al. (2000) [151]: program 

reading, bug location and bug correction. Mateis et al. (2000) [94] described a 

technique to diagnose errors involving objects and reference aliasing. Ko and Myers

(2003) [84] have presented a model of programming errors. They found that most 

errors were due to attention and strategic problems in implementing algorithms, 

language constructs, and uses of libraries.

The common debugging tools are integrated into compilers, i. e., the 

integrated development environments (IDEs). The IDEs provide some ways to 

capture some of the language-specific predetermined errors (e.g., missing end-of-

statement characters, undefined variables, and so on) without requiring compilation. 

Another way to help debugging is the visualization of the necessary underlying 

programming constructs as a means to analyze a program [5]. There are some 

researches which try to automate the debugging process through program 

slicing[78].

2.1.3 Program Comprehension
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In software evolution or software maintenance, programmers modify or add 

specific program concepts or features based on the change request. In order to 

modify the program, the program understanding process should be performed first. 

Therefore, program understanding plays an important role during software 

evolution[28]. 

A large body of available research deals with program comprehension [24]

[89, 90]. Various models have been established. According to the top-down theory 

of comprehension [24], the programmers first accept a hypothesis that describes 

the program and then attempt to verify this hypothesis.  Further hypotheses may be 

required in order to build a hierarchy of hypotheses.  Rajlich et al. (1994) [117]

proposed a layer program comprehension strategy in which the programmer 

creates a chain of hypotheses and subsidiary hypotheses concerning the properties 

of the code and then looks for evidence (beacons) in the code. This approach is 

very close to the top-down model. After conducting an experiment on program 

comprehension, Fix et al. (1993) [55] presented five abstract characteristics of the 

mental representation of computer programs: hierarchical structure, explicit 

mapping of code to goals, foundation on recognition of recurring patterns, 

connection of knowledge, and grounding in the program text. His approach can also 

be classified into the top-down approach. 

Letovsky (1986) [90] introduced the bottom-up theory, in which programmers 

gather small chunks of source code to form higher level abstractions.  These 

abstractions are recursively grouped to produce a high level comprehension of a 
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program. Schneiderman (1979) [137] also considered that understanding a program 

involves the creation of multilevel internal semantic structures. This multilevel 

structure is created in a bottom-up manner, where until the entire program is 

understood, programmers understand the function of a group of statements and 

pieces them together to obtain higher levels of chunks. Further, Pennington 

(1987)[111] suggested that program readers build at least two mental models of the 

program they are studying, a program model and a domain model. The program 

model is characterized by an abstract knowledge of the program's text structures 

and the domain model relates objects and functions in the problem domain to 

source-language entities.

An as-needed approach was suggested by Littman et al. (1986) [91], where 

programmers look only at the code related to a particular problem or task. Similarly, 

after experiments on expert programmers modifying PASCAL programs, 

Koenemann and Robertson (1991) [85] thought that program comprehension is a 

goal-oriented and hypothesis-driven problem-solving process, In this concept, 

programmers used as-needed strategy rather than systematic strategy during 

program comprehension. Clement (1996) [33] proposed an approach, similar to as-

needed approach, in which he suggested a narrowly-focused, reusable domain 

model to integrate and to aid in the process of top-down system comprehension. 

Mayrhauser and Vans (1994) [157] found that maintenance programmers 

use a multi-level approach that switches between the three postulated areas 

(domain model, situation model, and program model) and the maintenance 

activities are described by a small set of cognitive processes which aggregate into 
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higher level process (on several level of abstraction). Von Mayrhauser and Vans 

(1998) [160] further pointed out that program comprehension is not a simple top-

down or bottom-up process but rather that in which programmers apply various 

models depending on their tasks and their domain or programming knowledge.  

Programmers with more knowledge of domains more often prefer the top-down 

approach than those with less domain knowledge.  Programmers with less 

programming knowledge are more likely to use the bottom-up approach in program 

comprehension.  Based on their observations, Von Mayrhauser and Vans

(1998)[160] proposed an integrated program comprehension model that combines 

top-down, bottom-up, and as-needed; any of the three sub-models may be used at 

any time during program comprehension process.

Soloway et al. (1988) [142] observed that the process of program 

understanding is a cycle that includes reading the code (obtain the knowledge), 

raising questions (apply knowledge), making a conjecture (synthesize and generate 

hypothesis) and searching through code for answers (evaluation).  The process is 

also called the read-question-conjecture-search cycle.

A small knowledge base was proposed in order to help the apprentice 

navigate the software and help understanding the program [130]. Davis (1990) [43]

studied the roles of programming plans and selection rules during program 

comprehension. Benedusi et al. (1993) [12] studied the role of test cases and 

human activities in program comprehension. 

Semantic and syntactic knowledge comprehension was also studied by 

Shneiderman and Mayer (1979) [137]. They found that programmers retain both 
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semantic and syntactic knowledge in long-term memory, and that they use short-

term and working memories in performance of various program-related tasks. 

Syntactic knowledge is programming language dependent, but semantic knowledge 

refers to algorithms or data structure. The chunk concept was first proposed by 

Davis (1984) [46] to represent the basic knowledge unit in the program. The 

knowledge unit in a program was also examined and classified into three categories 

by Clayton et al. (1998) [32]: knowledge type, design decision used, and the type of 

analysis required in uncovering the atom. Robillard (1999) [124] identified two types 

of knowledge in software programs: topical and episodic. Topical knowledge refers 

to the meaning of words and episodic knowledge consists of people’s experience 

with knowledge. 

 Clayton et al. (1997) [30] described the application of a domain-based 

program understanding process, called Synchronized Refinement, to the problem of 

reverse engineering of the Mosaic World Wide Web browser software. The domain 

knowledge in program comprehension was also studied by Shaft and Vessey 

(1995) [132] and Rugaber (2000) [128]. Rugaber (2000) [128] even proposed a 

domain-based understanding approach and suggested a tool needed to store those 

domain knowledge for future maintenance and reuse.

Concept location is a key issue in program comprehension. Concept location 

constructs the mapping between programming concepts and the related software 

components [16]. Wilde et al. (1995) [168] developed a concept location technique 

called Software Reconnaissance that is based on analysis of program execution 

traces. Chen and Rajlich (2000) [28] proposed a method based on a search of static 
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code that is represented by Abstract System Dependence Graph and which 

consists of control flow and data flow dependencies among the software 

components.

Baniassad and Murphy (1998) [6] introduced the conceptual module 

approach that allows a software engineer to simultaneously perform queries about 

both the existing and the desired source structure.

Many tools have been designed and are available for program 

comprehension during this stage [138]. They can be classified into five categories:

 Language-based tools: emphasize a specific language and its problems.

 Paradigm-based tools: focus on a single programming paradigm.

 Dependency-analysis based tools: maintain static/dynamic program 

dependencies.

 Hypertext-based tools: use hypertext techniques to understand 

structural/behavioral aspects of programs.

 Program-animation based tools: use animation to understand the 

behavior of a program.

It is worth to notice that the cognitive approach has been used to guide the 

tool development for program understanding [180]. Singer et al. (2005) [139]

demonstrated a tool to support browsing through software that kept track of the 

navigation history of software developers. Storey et al. (1999) [147] examined 

various cognitive models and suggested some issues to guide the development of 

tools that could be used to help in software exploration. However, their tools are for 
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software evolution only; hence, they do not capture the complete domain and 

programming knowledge.

2.1.4 Novices and Experts

Soloway and Ehrlich (1984) [141] observed that during software 

development, experts employ high-level plans while novices use more lower-lever 

ones. Koenermann and Robertson (1991) [85] emphasized that experts primarily 

use the top-down strategy and novices often use the bottom-up strategy. 

A field study was performed by Visser (1987) [154] on professional 

programmers to study the strategies used when they were doing programming. He 

found that programmers used a number of data sources and included program 

listings into them, so programmers may recall that a solution exists in a listing, find 

the listing, and then use the coded solution as a plan for the current problem.

Several other research projects deal with the differences between novices 

and experts during debugging procedures. Gugerty and Olson (1986) [72] and 

Vessey (1983) [153] found that the knowledge differences between novices and 

experts on the program and programming explain why experts can debug more 

accurately. Spohrer and Soloway (1986) [145] and Gugerty and Olson (1986) [72]

observed that novices often introduced more new bugs to the programs than do 

experts. 

The differences between novices and experts during program 

comprehension have been well studied [13, 111]. Holt et al. (1987) [77] examined 
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programmers' cognitive representations of software by making either simple or 

complex modifications to the program using three different design methodologies. 

Berlin (1993) [13] provides some insights into the differences between experts and 

novices during program comprehension. The novices were probably well-trained 

professionals but without the specific domain and/or system specific knowledge the 

experts had. Berlin (1993) [13] also discussed the types of knowledge, and 

differences that distinguish the experts from the novices and also discussed how 

this may factor into productivity differences. His observations indicate the multi-

faceted knowledge needed for real-life programming expertise, and the knowledge 

and skills that make experts so much more effective in their daily work. He also 

showed that one major reason that makes good programmers more productive is 

that they know who to ask about particular problems and are able to quickly refer to 

other peer colleagues.

Burkhardt et al. (1998) [26] analyzed object-oriented (OO) program 

comprehension by experts and novices in three dimensions of comprehension 

strategies: the scope of the comprehension, the top-down versus bottom-up 

direction of the processes, and the guidance of the comprehension activity. They 

found out that experts used top-down, inference-driven strategies, while novices 

rarely used the top-down approach, but instead, used the execution-based 

guidance procedure. Wiedenbeck (1999) [167] studied the comprehension process 

of novice programmers on small procedural and object-oriented programs.  She 

found that novices tend to develop a more function-related mental representation 

with less emphasis on data flow. 
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Detienne (1990) [47] conducted experiments on professional programmers in 

order to study the difficulty with OO language. As one of the earliest empirical 

studies of impact of OO programming, it was perhaps instrumental in initiating 

further work in this area. However, Detienne’s study has some limitations and 

therefore, there are doubts concerning the validity of its argument regarding the 

inadequacies of the OO approach.

Fix et al. (1993) [55] studied how novices and experts understand Pascal 

programs and found that expert programmers use more abstract mental 

representations for the programs than do novices. Studies of differences between 

procedural and OO programmers were carried out by Corritore and Wiedenbeck 

(2000) [36] and Ramalingam and Wiedenbeck (1997) [121]. They found that the OO 

programmers tended to use a strong top-down approach to program understanding 

during an early phase of study of the program, but increasingly used a bottom-up 

approach during the maintenance tasks. Further, the procedural programmers used 

a more bottom-up orientation throughout all activities [37] [38] [36]. Mosemann and 

Wiedenbeck (2001) [100] found that novice programmers used a sequential or 

control flow view of the program during program comprehension and had difficulties 

with a data flow view.

Perkins and Martin (1986) [112] described the main difficulties faced by 

novices in general as “fragile knowledge” and “neglected strategies”.  Novices 

obtain the knowledge, but do not know how to apply it.  Gilmore (1990) [66] also 

studied the programming knowledge of experts and realized that expert 
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programmers possess many programming strategies, while novices suffer from lack 

of both knowledge and adequate strategy to cope with programming problems.

Other differences between novice and expert programmers were studied by 

Pennington (1987) [111] who found that experts use cross-referencing strategies 

whereas novices usually apply code-based and domain-based strategies.  Davies 

(1993) [44] also studied coding activities by experts and novices in terms of 

information externalization strategies. He found that experts tend to rely much more 

upon the use of external memory sources.

2.1.5 Summary

Based on the above brief review of cognitive research in software 

engineering, we find that there are significant bodies of research on programming 

understanding and program debugging. However, there is not much research on 

incremental software development and program design. Particularly, there is not a 

common model proposed for all the software engineering processes, and all the 

existing models are one-dimensional and can only be applied to individual 

processes. On the other hand, no model explains the cognitive activities in detail, 

i.e. we do not know exactly how programmers do when they have conducted 

software engineering activities. Meanwhile, a well-defined cognitive model can also 

help to build tools which can improve the programming process and learning.

Although there is some research on expert programming, most of the 

research is not based on application by professionals. Also, there still exists a little
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comparison between the cognitive activities taken by experts and novices on the 

same programming problems. Therefore, we have no very clear understanding of 

the differences between experts and novices from the cognitive point of view, even 

though we are convinced that a better understanding the differences between 

novices and experts can shed light on how to train novices into experts.

The generalization of previous research results were based primarily on 

procedural or declarative languages. The impact of OO paradigms on cognitive 

activities needs to be well studied.  

The cognitive activities in software engineering can be studied from either 

individual or team perspective. However, most of the work done so far was based

on individual programmers. There is no much Work on the collective and 

collaborative aspects of cognitive activities on some software processes. Some 

software engineering processes, such as pair programming, greatly involve the 

knowledge from a team of programmers, or a pair of programmers. The study of 

knowledge shared and cognitive activities should be useful to improve the 

processes.

The cognitive processes during program comprehension and program 

debugging need study from a different angle in order to understand the involved 

cognitive activities in detail. 

2.2 Cognitive Research Methods

2.2.1 Think-Aloud Protocol
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Cognitive scientists commonly use protocol analysis, task analysis, and 

discourse analysis [51, 58, 133] in their empirical work. 

Task analysis is one of the techniques that study both the subject’s actions 

and the accompanying cognitive processes [133] and which is commonly used to 

study subjects who have problems mastering complex behaviors. The purpose is to 

get an insight into the nature of a task when it is performed in the field.  Task 

analysis addresses what is done, instead of what should be done, and it is seen as 

a useful tool for human-computer interaction research.  The data is collected 

through the observations and the interviews with experts. 

Discourse analysis is a way of approaching and thinking about a 

problem[58].  It is neither a qualitative nor a quantitative research method, but 

rather a manner of questioning the basic assumptions currently held. It allows 

access to the ontological and epistemological assumptions behind a project or a 

method of research.

Protocol analysis is a rigorous methodology for eliciting verbal reports of 

thought sequences [51] and is the most common method to study human cognitive 

processes. It identifies basic knowledge objects. In protocol analysis, subjects give 

verbal reports on the cognitive processes they are experiencing during a task.  The 

three types of protocols involved in this are introspective, retrospective, and think-

aloud [70]. Introspective and think-aloud protocols require the subjects to report 

their thoughts during a task, whereas retrospective protocols are gathered after a 

task is finished. Both introspective and retrospective reports require the subjects to 
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interpret the cognitive processes they use [51]. However in think-aloud protocol, 

subjects simply say what comes to their mind when they are completing a task; they 

are not supposed to comment on or to interpret their thoughts. All these types of 

verbal protocols require that one subject work individually. 

The think-aloud method provides a way to collect data that could not be 

otherwise collected. It allows us to understand not only what the subjects are doing, 

but also why, and provides a basis for investigating the underlying mental 

processess during complex tasks. 

The think-aloud protocol was used in 1920’s by Watson [166] to illustrate 

general characteristics of the cognitive process in problem solving. The approach 

was later developed into a research method, especially when tape recorders 

became available in 1945.  For example, Duncker (1945) [50] used it to analyze 

problem-solving processes in terms of memory search. The think-aloud method was 

systematically described by Newell and Simon (1972) [103] and used to build a 

detailed model of problem-solving processes. 

Although the think-aloud protocol was originally used in psychology [51], it 

has now been used in other areas, such as medicine, usability evaluation [11], 

engineering design [65] and software comprehension [156],  [158]. In most cases, 

think-aloud questions are used to stimulate verbalization, such as “what are you 

thinking now”, “keep talking”, “think aloud”, and so forth. 

Think-aloud protocol forces the subjects to speak out what is in their mind at 

a particular time.  Although Ericsson and Simon (1993) [51] did not find changes in 

the cognitive process when subjects were asked to verbalize their thoughts, they 
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found that certain changes occured when subjects were asked to explain their 

cognitive processes.

A serious problem with think-aloud protocols is that subjects may endavour 

to deliberately produce the desired data. This effect is called “placebo effect” [127].  

The outcome of an experiment may be biased if the experimenter unintentionally 

indicates the expectations by verbal communications or gestures like nodding when 

an expected result is observed [126].

The presence of an experimenter/mentor can also be problematic because it 

might affect the behavior of the subjects. Orne (1969) [108] stated that subjects can 

never be neutral to an experiment; the Hawthorne effect [1] will happen when 

subjects know that they are being studied, and that affects the outcome of the 

experiment. In particular, the think-aloud protocol with observation and the 

communication between mentor and subjects might affect the outcome [127]. 

A verbal report of the mental process may change the way in which a subject 

interacts with the task and this may affect the subject’s decision process. The think-

aloud protocol forces subjects to speak and it interferes with the thinking 

process[92]. Some subjects may experience difficulties talking when they perform 

their tasks, or they may be affected by the presence of the mentor [51].  Some

people may find it difficult to verbalize their thoughts [11]. 

Therefore, we need to search for additional empirical methods which can be 

used to study the cognitive process during software engineering processes in order 

to offer relief from those problems caused by the think-aloud protocol.



www.manaraa.com

32

2.2.2 Recording Methods

The mental process of subjects requires verbalization and must be recorded 

for further analysis and research. 

There are many ways to record the activities performed by subjects, such as 

audio recording, video recording, user notebooks, and computer logging. Among 

the recording methods, video and audio recordings are most commonly used.  They 

provide rich and relatively permanent primary records.

Videotaping

Videotaping produces a continuous view of events and provides a detailed 

record of the process. Videotaping records the movements of the mouse, the code 

changes, and the communication between programmers. Normal observation tends 

to emphasize events that occur more frequently, since there is more data to be 

compared, whereas a video recording enables a repeated observation and 

exploration of a rare event [51].  

 Individual scenes can be replayed numerous times as the researchers 

reflect on what has occurred, and premature conclusions can be reduced or 

avoided [51]. Video provides continuous data rather than snapshot data and, hence, 

it records the richness of interactions. This is of great benefit. Data maintenance is 

also easy since we can store it in computer files, make copies without degradation, 

or copy them directly to CDs or DVDs.  We also have many options for editing.
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While videotaping offers many advantages, there are also limitations and 

weaknesses.  Subjects may be more awkward or shy in front of a video camera 

than when they are near a portable audio recorder or microphone, since the later is 

less noticeable or conspicuous. 

The playback of a digital video may be more complex for the experimenter 

than the playback of digital audio.  Digital camcorders require a learning curve to 

successful operation.  A great deal of work is involved when video data is 

transferred to a computer. This includes the file format, the video compression 

scheme, the output file types, the delivery medium etc.  Producing the digital video 

file is also time-consuming. Rendering a full-screen video of less than an hour’s 

duration on a 2GHz PC with 512 Mb of RAM can take up to 4-5 hours to complete.    

The cost of equipment resources, the learning curve, and the production time 

for producing digital audio clips is less than the cost occurred in digital video 

production. Shooting, editing and producing video requires more time to learn and 

to produce than does audio production.  Due to the huge amount of information 

being processed, video clips processing requires a higher level computer, while a 

low-end PC would perform the task satisfactorily in audio production.

Voice recording

As recently as ten years ago, voice-recording used to be commonly used for 

recording processes during cognitive research. Until the latter part of 1990s, most 

voice recording in experiment or field study had been done with the traditional 
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cassette tape recorder. Subsequently, the digital recording devices have been 

invented and voice recording software has been developed.  They now clearly 

outrank tape recorders in terms of sound quality, reliability, and usability. 

Table 2.1: The comparison between videotaping and voice-recording 

Advantages Disadvantages
Videotaping Can capture screen 

dynamically;
Can capture everything we 
need;
Easy to translate the data  into 
episodes; 
Have high recording quality;
Be easy to maintain and store 
the tapes 

Higher cost of purchasing tapes and equipment;
Have to have the mentor presented;
Need to Change tape which could lost data;
Have some Hawthorne effect;
Editing takes time;
Coordinate takes time;
Need a learning curve to use the equipment.

Voice-
recording

Cost effective with free 
software;
Be flexible to schedule;
Can capture screen-shots as 
needed; 
Less Hawthorne effect;
Easy to edit the data

Cannot capture the whole process;
Have a little more work to translate into episodes;
Recording quality could be low.

Under certain circumstances, voice-recording is more preferred to video-

taping, because of the limitation of videotaping we have discussed in the previous 

section. The advantages of voice-recording method are commonly accepted to be:

 No learning required to manipulate techniques

 Easy to conduct

 Easy to play back

 Minimum Hawthorne effect since the microphone can be put in a hidden 

place

 Less cost in equipment
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Of course, voice-recording cannot record the screen changes made by 

programmers, and mouse movement. Therefore, at present, it is not commonly 

used.

Table 2.1 lists the comparison between videotaping and voice-recording.

2.2.3 Coding Schemes

After the data is captured, it is transcribed into “raw protocol”. The raw 

protocol is then divided into small units called “segments” or “episodes”. After the 

data is transcribed and divided into episodes, data analysis is conducted. 

Some researchers, such as Meijer and Riemersma (1986) [98] and Confrey

(1994) [35] have supported their conclusions by directly citing the protocols. 

However, the coding scheme is becoming more and more popular; without a coding 

scheme, an analysis on the data is difficult or sometimes even impossible to 

complete [59].

In software engineering, von Mayrhauser and Lang (1999) [156] pointed out 

that one of the difficulties for protocol analysis is to compare the results across 

different studies.  That is why a coding scheme is needed to provide a unified 

classification; the scheme facilitates the replication of the protocol analysis and the 

assessment of the validity of its results. 

Pennington (1987) [111] proposed a coding scheme for program 

comprehension analysis.  Oslo et al. (1992) [107] developed a coding scheme to 

observe the programmers’ behavior during design meeting. Shaft (1995) [132]
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developed a coding scheme to help code the verbal data when she studied the role 

of domain knowledge in program comprehension. Most recently, von Mayrhauser 

and Lang (1999) [156] described a detailed coding scheme for systematic analysis 

of program comprehension. 

Therefore, additional code scheme or cognitive model may help to 

understand the cognitive process during software engineering processes and in 

turn, may improve the quality of software developed.

2.3 Cognitive Theories

2.3.1 Introduction

There have been numerous publications on constructivist learning, including 

the classical work of Piaget (1954) [114]. Piaget observed two learning activities: 

assimilation and accommodation.  Von Glasersfeld’s summary in [155] also describes 

these activities.  In [106], Novak (1998) addressed theories of learning, knowledge, 

and instruction, and used concept maps as tools to describe the knowledge. 

Many learning theories were developed for the purpose of providing an   

explanation and analysis of classroom learning [48]. Bloom and his colleagues [18]

identified six levels of learning known as the Bloom taxonomy of the cognitive 

domain, starting from the knowledge (or recognition) at its lowest level, followed by 

comprehension, application, analysis, synthesis, and evaluation. 
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Vygotsky (1978) [161] asserted that culture is the most important issue in 

individual learning. His social cognition learning theory emphasizes social interaction 

in the development of cognition. Fischer and Ostwald (2001) [54] discussed the social 

and evolutionary process involved in knowledge construction during software 

development. Although social interaction is an important element during software 

engineering processes, we believe that our emphasis must be on individual 

programmer and the autonomous construction of their knowledge. As a result, we 

find this theory less applicable.  

Distributed cognition was proposed by Hollan et al. (2000) [76]. It 

encompasses interactions among people, resources, and materials. Wallenstein

(2003) [163] proposed a framework for a development tool design based on 

distributed cognition theory. Since some of the software engineering processes, 

such as program comprehension, program debugging, are often individual work that 

involves less resources and interaction with other people, therefore distributed 

cognition theory is not applicable here.

Observational learning [15] states that learning occurs through the simple 

processes of observing someone else's activities.  However, software engineering 

processes involve more complicated processes than simple observation; therefore, 

observational learning is not suitable for studying the cognitive process during 

software engineering processes. 

Gardner (1993) [64] proposed the theory of multiple intelligences and 

considered eight different intelligences to count for a broader range of human 

learning potential: linguistic, logical-mathematical, spatial, bodily-kinesthetic, musical, 
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interpersonal, intrapersonal, and naturalist. The theory provides guidance for an 

optimal use of talent, but it does not concentrate on the cognitive activities involved in 

the learning. Therefore we do not use it in explaining software engineering processes. 

Brain-based learning is based on the structure and function of the human brain 

and emphasizes the fact that the brain can perform several activities spontaneously, 

such as the processes of tasting and smelling. Learning involves both focused 

attention and peripheral perception and requires both conscious and unconscious 

processes [82]. Because brain-based learning deals with the functions of the brain 

rather than the cognitive activity of learners, we did not find it applicable in our 

situation. 

Control theory claims that behavior is not caused by a response to an outside 

stimulus, but inspired by what a person wants most, such as survival, love, and 

freedom [67]. Again we do not find that view useful for the study of software 

engineering processes.

Baragry and Reed (2001) [8] viewed software engineering processes using 

other disciplines such as metaphysics, epistemology, and psychology of cognition. To 

understand the design process, Ribbins et al. (1998) [123] used several cognition 

theories, including Reflection-In-Action. We believe that it might be useful to study the 

software engineering processes from disciplines other than the cognitive science, but 

the learning theory should be the more useful one.

We concluded that although these theories contain valuable insights, they are 

not directly applicable to our purposes in the study of the cognitive activities during 

incremental software development, program debugging and program comprehension.  
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The most promising theories we found include the constructivist learning theory and 

Bloom taxonomy [177]. We adopted them as components of our self-directed 

learning model and will explain them in the next two sections.

2.3.2 Constructivist Learning Theory

Constructivist learning theory explains the process through which people 

learn new facts and then add them to their knowledge base. It is based on the work 

of Piaget (1955) [114]. The original aim of Piaget’s work was to explain learning in 

children, but the constructivist theory also extends to adult learning and to 

epistemology [155]. In [155], von Glaserfled (1995) described constructivism as a 

theory of knowledge. He defined radical constructivism as a theory of learning, and 

saw facts as being actively received either through the senses or through 

communication.  

The basic assumption of this theory is the hypothesis that the learners 

actively and incrementally construct their knowledge. They start from some pre-

existing knowledge and extend it by connecting new facts to previously learned 

knowledge. According to constructivism, it is not possible to assimilate new 

knowledge without having some structure developed from a previous knowledge. 

Knowledge is actively constructed by learners [60]. It is individually constructed by 

learners who try to explain things they do not completely understand and socially 

constructed by a group of learners who convey meanings to each other. They may 
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go through stages in which they may accept ideas that they will later discard as 

being wrong.  

Piaget characterized constructivist learning in terms of two cognitive 

activities, assimilation and accommodation. Assimilation describes how learners 

deal with new knowledge, whereas accommodation describes how learners 

reorganize their existing knowledge. Assimilation and accommodation are 

complementary and inseparable, although one may be predominate at any 

particular time. They are the two poles of an interaction between the organism and 

the environment. 

Constructivist learning theory explains the learning process for adults and 

children. Since the software engineering process can be viewed as a problem-

solving process and a learning process, it might be a good idea to apply the 

constructivist learning theory in explaining the cognitive activity in software 

engineering. On the other hand, the software engineering process may be a good 

test-bed for constructivist learning theory, by further identifying the activities 

involved. 

Recently, Rajlich (2002) [115] and Exton (2002) [52] applied constructivist 

learning theory to program comprehension. Rajlich (2002) [115] considered that 

programmers begin with the pre-existing knowledge and conduct program 

comprehension using two processes: assimilation and adaptation. Exton (2002) [52]

overviewed the existing program comprehension strategies and correlated them 

with constructivism learning theory.
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Rajlich and Xu (2003) [119] divided the two activities: assimilation and 

accommodation into four activities: absorption, denial, reorganization and expulsion. 

They provided a comparison between constructivist learning and the incremental 

software development process. Rajlich and Xu (2003) [119] also correlated the four 

programming activities: incremental change, reject of change request, refactoring 

and retraction, with the four cognitive activities. We used the extended constructivist 

theory as a component of our self-directed learning theory [177] [174].

2.3.3 Bloom’s Taxonomy of the Cognitive Domain

Beginning in 1948, Bloom headed a group of educational psychologists who 

undertook the task of classifying educational goals and objectives. They [18]

identified three domains of learning: cognitive, affective, and psychomotor. The 

cognitive domain is for mental skills, the affective domain is for growth in feelings or 

emotional areas, and the psychomotor domain is for manual or physical skills. The 

first one is commonly referred to as “Bloom’s Taxonomy of the Cognitive 

Domain”[18]. For simplicity, we refer in this thesis to the Bloom’s Taxonomy of the 

Cognitive Domain as Bloom’s taxonomy or Bloom’s levels.

Bloom identified six levels within the cognitive domain. The lowest level is the 

simple recall (knowledge) or recognition of facts.  Then there are increasingly more 

complex (comprehension, application, and analysis) and abstract mental levels until 

the levels of synthesis and evaluation [18] are reached. The categories can be 

considered as degrees of difficulty and proficiency.
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Table 2.2: The cognitive domain taxonomy and illustrative examples

Level Sample verbs Sample Behaviors
Recognition 
or Knowledge

collect, copy, define, describe, enumerate, 
examine, identify, label, list, name, quote, read, 
recall, retell, record, repeat, reproduce, select, 
state, tell

Student is able to 
define the six 
levels of Bloom’s 
taxonomy 

Comprehension associate, cite, compare, contrast, convert, 
differentiate, discuss, distinguish, elaborate,  
estimate, explain, extend, generalize, give, 
group,  illustrate, interact, interpret, observe, 
order, paraphrase, review, restate, rewrite, 
subtract, trace

Student explains 
the purpose of 
Bloom’s taxonomy.

Application administer, apply, calculate, capture, change, 
classify, complete, compute, construct, 
demonstrate, derive, determine, discover, draw, 
establish, experiment, illustrate, investigate, 
manipulate, modify, operate, practice, prepare, 
process, produce, protect, relate, report, show, 
simulate, solve, use

Student writes an 
instructional 
objective for each 
level of Bloom’s 
taxonomy.

Analysis analyze, arrange, breakdown, classify, compare, 
connect, contrast, correlate, detect, diagram, 
discriminate, distinguish, divide, explain, 
identify, illustrate, infer, layout, outline, points 
out, prioritize, select, separate, subdivide

Student compares 
and contrasts the 
cognitive and 
affective domains.

Synthesis adapt, combine, compile, compose, construct, 
correspond, create, depict, design, devise, 
express, format, formulate, facilitate, improve, 
integrate,  invent, plan, propose, rearrange, 
reconstruct, refer, relate, reorganize, revise, 
specify, speculate, substitute

Student designs a 
classification 
scheme for 
educational 
objectives that 
combines the 
cognitive, affective, 
and psychomotor 
domains.

Evaluation appraise, assess, conclude, criticize, convince, 
decide, defend, discriminate, evaluate, explain, 
grade,  judge, justify, measure, rank, 
recommend, reframe, support, test, validate, 
verify

Student judges the 
effectiveness of 
Bloom’s taxonomy.

Table 2.2 outlines each level of cognition along with illustrating verbs and 

simple examples that illustrate the type of the thought activity of that level [42, 79].

Bloom’s taxonomy is easily understood and has been studied and widely used 
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today in education. Teachers often use it to guide their instruction and to prepare 

questions for students [149]. There is some debate in educational circles if the 

synthesis layer is truly below the evaluation layer [104], but that discussion is 

beyond the scope of this thesis and does not impact our conclusions.

 The six levels of Bloom’s taxonomy clearly explain the mental process 

involved in student learning in the classroom. Software engineering process involves 

cognitive activities and is also a learning process. It would be useful to further study 

Bloom’s Taxonomy of the Cognitive Domain, and to use it for analyzing the software 

engineering processes.

Bloom taxonomy has been applied by Buckley and Exton (2003) [25] to 

assess programmers’ knowledge. They used Bloom taxonomy to correlate various 

software maintenance tasks. 

We [173] used the Bloom taxonomy to study the program debugging 

process. We identified that programmers have to move from one level to another 

higher level of Bloom’s taxonomy in order to make updates and debug a program.
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CHAPTER 3

RESEARCH METHODS

Research methods used in this thesis are discussed in this chapter. We 

mainly applied case study method in our work. We also developed dialog-based 

protocol method for our research which is described below. In this chapter, we also 

discuss the recording methods used in our work. 

3.1 Case Studies 

Case study research is the most common qualitative method used in 

information systems [2]. Among numerous definitions of the scope of a case study, 

a typical one is as follows [178]:

A case study is an empirical inquiry that:

“Investigates a contemporary phenomenon within its real-life context, 

especially when the boundaries between phenomenon and context are not clearly 

evident."

Case study research can be positivist, interpretive, or critical, depending 

upon the underlying philosophical assumptions of the researcher. Correspondingly, 

there are three kinds of case studies: exploratory, explanatory, and descriptive. 

The essential characteristic of case studies is that it strives towards a holistic 

understanding of systems of action. Therefore, case studies are a valuable method 
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of research, with distinctive characteristics that make them ideal for many types of 

investigations. 

In order to study the cognitive process, we conducted a series of case

studies on incremental software development, program debugging and software 

evolution after having obtained significant experience from the pilot study. The basic 

method was to give program problems and ask the programmers to conduct 

incremental software development or to evolve the programs. They were recorded 

in order to document all the information involved during this process. They were

given a guideline to direct their experiment and monitored. Based on raw data, we 

did analysis and modeling, recognizing the cognitive activities with the help of our 

cognitive model. 

For each case study on incremental software development and program 

debugging, we used our empirical method to collect the following data for individual 

action or mental activity as taken by programmers:

 Construction activities (absorption, reorganization, denial, expulsion)

 Bloom’s taxonomy levels (recognition, comprehension, application, 

analysis, synthesis and evaluation)

 Domain concepts and programming concepts created or revisited 

 Phenomena occurred and their relationship with concepts

 The number of times of the concepts which have been visited

 The number of new concepts added

Then we used the self-directed learning theory to explain our case study 

results. The self-directed learning theory is described in Chapter 4 in detail.
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The pilot study is described in Appendix A. Other case studies are discussed 

in Chapters 5, 6, and 7. The detailed data are in appendixes B and C.

3.2 Dialog-Based Protocol

3.2.1 Description of the Dialog-Based Protocol

As mentioned earlier, the think-aloud protocol is commonly used in cognitive 

research during software engineering processes. Parnas (2003) [110] discussed the 

limitations of empirical studies in software engineering due to the Hawthorne 

effect[1]. In a previous chapter, we have discussed the think-aloud protocol, and 

have discovered some of its defects. In order to reduce the defects of think-aloud 

protocol, particularly the Hawthorne effect and placebo effect, we propose a dialog-

based protocol (see Figure 3.1). 

Figure 3.1:  Steps of dialog-based protocol 

Recording the dialog

Transcribing

Separating episodes

Classifying cognitive activities 

Using dialog in a task
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The dialog is a conversation between two people, and it allows the two 

people to share ideas and to learn from each other.  The dialog contains a large 

quantity of information which has been used as the raw data for studies in many 

fields, such as linguistics, psychology, sociology, and literature [19].

During pair programming, two programmers work side-by-side on design, 

algorithm selection, implementation, and testing at one machine [10]. Since the 

programmers need to cooperate with each other, they must verbalize their thoughts 

to each other so as to enable their partner to receive and understand those ideas. 

The dialog allows the mental process to be easily verbalized and thus, can reduce 

the Hawthorne effect and placebo effect, since programmers can easily forget that 

they are being studied when they talk freely. 

If the paired programmers are allowed to speak of all that comes to their 

minds, one can record their communication and analyze it from the point of view of 

cognitive activities. We call this method the Dialog-Based Protocol. It is derived from 

the idea of pair programming [10]. The dialog-based protocol is similar to the think-

aloud protocol. One major difference between the two protocols lies in the fact that in 

the think-aloud protocol only one subject is required to speak his/her own thoughts, 

whereas in the dialog-based protocol, two people are verbally expressing their 

thoughts while they complete their tasks. Both protocol techniques require the 

process to be recorded for analysis, either as audio or video. The anticipated 

advantages are summarized in Table 3.1 and discussed in the following section

when a comparison is made with think-aloud protocol. 
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3.2.2 Comparison with the Think-Aloud Protocol

According to Ericsson and Simon (1993) [51], the think-aloud protocol can 

only produce a subset of thoughts.  We speculate that dialog-based protocol can 

force partners to explain all the essential issues clearly to each other, thus, allowing 

for a more complete documentation of the process. Also, the dialog-based protocol 

requires continuous verbalization during a programming task. This could provide a 

more complete picture of the cognitive process than the think-aloud protocol, 

because the latter is very likely to be constantly disrupted by the experimenter. 

However, since subconscious thoughts will be missing from the dialog, we realize 

that even in dialog-based settings the recorded dialogs might not be complete.

Correctness of the data is also an important factor in protocol analysis.  

Because of the disturbance of the subjects in the experiment, the think-aloud data 

might contain invalid portions. Questioning or reminding the subjects may change 

the cognitive processes. In the dialog-based setting, there is no communication 

between the mentor and the subjects. Therefore, we speculate that the invalid 

portion of data is reduced.

Another problem associated with the think-aloud protocol is the 

misinterpretation, because some subjects may have difficulties in explaining the 

process.  However, in dialog-based sessions, subjects have to explain all important 

points exactly to their partners, and as a result, such misinterpretations should be 

reduced.
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Table 3.1: Anticipated comparisons between Think-Aloud Protocol 
and Dialog-Based Protocol

Think-Aloud Dialog-Based

Completeness of data incomplete more complete  

Correctness of data moderate high

Hawthorne effect present minimized

Placebo effect present minimized

Performance of subjects more affected less affected

Mentor Presence necessary unnecessary

Pairing problem does not exist exists

The think-aloud protocol forces subjects to speak and interferes with the 

thinking process [92]. Some subjects may experience difficulties talking when they 

perform their tasks, or they may be affected by the presence of the mentor [51].  

Some people may find it difficult to verbalize their every thought [11]. 

We speculate that dialogs can be recorded under more natural 

circumstances than think-aloud sessions. When people collaborate, they are 

required to give arguments in order to clarify their thinking. They might forget that 

they are recorded, thereby reducing the Hawthorne effect.

The think-aloud protocol may also impact the programmers’ performance, 

because they have to conduct the tasks and also verbalize them.  Berry and 

Broadbent (1990) [14] reported that people who were not thinking aloud performed 

faster than those who were. Since dialogue is inherently a part of many activities 

involving partners, the dialog-based protocol incurs no performance overhead when 

used in an applicable experiment (see Table 3.1).
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The mentor must be present in think-aloud protocol since subjects need to 

be reminded to verbalize the thinking. For the dialog-based protocol, the presence 

of the mentor is not necessary since the programmers need to communicate 

anyway (see Table 3.1). Therefore, the placebo effect is reduced. Besides, the cost 

of the presence of the mentor during the experiment is higher in think-aloud protocol 

than in dialog-based protocol.

Pairing might be an issue in the dialog-based protocol; some pairs work well 

together while others do not. Some subjects may be embarrassed to speak out in a 

pair whereas he/she would be more willing to comment in a think-aloud setting. 

Therefore, the subjects chosen for the case study have to be good communicators

and two programmers in the pair should be able to work together.

3.3 Recording Methods

The recording methods might affect the experiment as well, because when 

the subjects know that they are being recorded they might alter their behavior.  

Therefore, choosing the right recording method for data collecting is an important 

issue. We used videotaping and screen capturing in our experiment. 

3.3.1 Videotaping

As discussed in Chapter 2, videotaping is the most common recording 

method used for collecting empirical data in cognitive research. The video provides 
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continuous data rather than snapshot data, and it records the richness of 

interactions. We used digital camera to record two pairs’ experiment.

3.3.2 Software Screen-Capturing

For the study of cognitive activities in software engineering, the screen 

changes performed by the programmers and their communication are far more 

important than other visual information, such as programmer movements. Screen-

capturing software records screen changes.

In recent years, the screen-capturing programs have become more 

sophisticated. The software not only captures the screen changes, but also records 

the communication between programmers. The screen-capturing software has 

evolved into an effective tool for collecting data during cognitive research. 

Screen-capturing does not require extensive operation knowledge, since it 

creates media files which can be operated easily.  There can be a few seconds’ 

delay in the screen change capture. As a result, there is a possibility that some 

faster changes may have happened during this time and that they are not found in 

the screenshots. However, since programmers can not change code as fast, such 

delays do not produce any substantial loss of data.

An example of screen-capturing software is Microsoft Producer [99], which 

supports screen-capturing and voice-recording automatically at the same time.  

With Microsoft Producer, the mouse events, the communication between the two 

programmers, and the changes of the screen are digitally recorded.  Although it 



www.manaraa.com

52

does not record programmers themselves, Microsoft Producer captures all of the 

essential data during the programming process. Microsoft Producer delivers high 

quality audio and video files in various formats.  In this way, the programming 

process and its environment can be stored or replayed for further analysis.

We used Microsoft Producer to record the programming activities for eight 

pairs when we conducted experiment on incremental software development.
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CHAPTER 4

SELF-DIRECTED LEARNING THEORY

In Chapter 2, we have briefly reviewed the code schemes used by 

researchers. In this chapter we will describe our novel model: Self-Directed 

Learning Theory, which can be used as a coding scheme to analyze the cognitive 

activity during incremental software development, program debugging and software 

evolution [177].

Before applying the code scheme to do any analysis, the raw protocol should 

be divided into “segments” or “episodes”. Some researchers divided the raw 

protocols into episodes based on the subject’s intentions and actions [65], while 

others used verbalization events or syntactic markers [51]. 

In our case study, we divided the dialog into episodes based on concepts 

that the dialog deals with. We classified the concepts as domain concepts and 

programming concepts.  Domain concepts belong to a specific application domain 

of the program [16], such as strike and spare in the bowling application, whereas 

programming concepts belong to the knowledge of programming, such as the 

programming language, program development process, design decisions, and 

others.  Since they drive the software development, we considered only the design 

decisions in programming concepts, while other programming concepts only play a 

background role. We used the following rule to separate dialog into episodes: a new 

episode begins when programmers start the discussion of a different concept. If 

several concepts are discussed at the same time, a new episode starts when one of 
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the concepts is dropped. When no significant concept is involved in a particular part 

of the dialog, we combined this part with the previous episode. 

4.1 Description of the Self-Directed Learning Theory

The self-directed learning theory extends the constructivist learning theory 

[114] and combines it with the Bloom taxonomy of the cognitive domain [18].  The 

extended constructivist learning theory is used to define the differences among the 

cognitive activities and Bloom’s taxonomy is used to classify the cognitive levels.

Table 4.1: The four cognitive activities and corresponding verbs

Activities Sample verbs
Absorption add, believe, choose, conclude, confirm, consider, create, define, 

demonstrate, determine, identify, image, imply, interpret, make 
out, prove, recognize, set up, show, start, think, verify, visualize

Denial decline, disapprove, refuse, reject, turn down
Reorganization adjust, alter, break, change, extract, fix, modify, move, pull out, 

refactor, regroup, tune up 
Expulsion delete, dismiss, eliminate, erase, exclude, expel, force out, get rid 

of, kill, remove, take out, throw out, withdraw

As we mentioned in Chapter 2, constructivist learning is based on the work of 

Piaget on child learning [114]. Piaget identified two learning activities: assimilation 

and accommodation. Assimilation describes how learners deal with new knowledge, 

whereas accommodation describes how learners reorganize their existing 

knowledge.  

We [119] find that assimilation can be subdivided into two separated 

activities: absorption and denial. Absorption refers to the case when learners add 
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new facts to their knowledge, and denial occurs when learners reject the new facts 

because they do not fit into the existing knowledge base.  Accommodation was also 

divided into two separate activities.  When the learners reorganize their knowledge 

and apply it to aid future absorption of new facts, we call their cognitive activity 

reorganization. When a part of the knowledge becomes obsolete and the learners 

reject it, the corresponding activity is called expulsion. Table 4.1 contains the four 

cognitive activities and the characteristic verbs that programmers use when using 

the specific activity.

In order for learning to occur, the learners must possess preliminary 

knowledge and they must be in a learning environment. Preliminary knowledge or 

capabilities make learning possible; the more the learners know, the more they can 

learn. We find that learners’ preliminary knowledge is based on the experience that 

was supplemented with the obvious and easy-to-find facts about the program during 

software engineering. Sometimes this preliminary knowledge turned out to be 

inaccurate or even completely wrong, and the learners employed the four cognitive 

activities to build more accurate knowledge. The result of learning is resultant 

knowledge.

Bloom and his colleagues identified six levels of learning known as the Bloom 

taxonomy of the cognitive domain; see Table 2.2.  The six levels include the 

knowledge or recognition of facts at its lowest level, followed by comprehension, 

application, analysis, synthesis, and evaluation [18]. 

Bloom taxonomy is a well-established part of the theory of learning and we 

applied it to classify the levels of the programmer cognitive activities. The Bloom 
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levels are also assigned to each episode through the use of characteristic verbs 

(Table 2.2). Table 2.2 is a composite of similar tables in [42, 79] and it was cleaned 

for the purposes of software engineering, where some verbs attained a different 

meaning, for example the verb compile.

Table 4.2:  The self-directed learning model: All four cognitive activities may take place 
at any of the Bloom levels

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Recognition v v v v
Comprehensi
on

v v v v

Application v v v v
Analysis v v v v
Synthesis v v v v
Evaluation v v v v

The self-directed learning model is a two dimensional model, composed in one 

dimension of the four cognitive activities and on the other dimension of six levels of 

Bloom taxonomy (see Table 4.2). The theory is particularly suitable to the situations 

where learners must discover the facts of the knowledge on their own, without a 

teacher. This is a common situation in software engineering. 

Once the dialog has been decomposed into episodes, the self-directed 

learning theory is used for protocol analysis. Each episode is classified by using the 

characteristic verbs from Table 4.1 and Table 2.2. The final data is computed as the 

frequencies of occurrences in episodes for each activity type and for each Bloom 

level.
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We have applied the self-directed learning theory and dialog-based 

protocol[174] [177] to conduct case studies on incremental software development 

and in program debugging [173]. 

4.2 Comparison with Other Models

Over the past twenty years, there have been many cognitive models 

proposed for program comprehension. The models include top-down model, 

bottom-up model and as-needed model [24] [90] [91]. 

As discussed in Chapter 2, we find that all those existing models (top-down, 

bottom-up etc) agree that the program comprehension process uses existing 

knowledge combined with a comprehension strategy in order to acquire new 

knowledge. This means that both assimilation and accommodation occur during 

program comprehension, which coincides with our self-directed learning model. 

However, there are some significant defects in those previous models. 

First, none of them describes in detail the actual cognitive activities. All 

models describe the simple procedure for program comprehension. For example, 

the bottom-up model only mentions that programmers combine together small 

chunks of source code to build up higher levels of knowledge, but it does not 

specify what kinds of activities programmers perform. The self-directed learning 

model classifies the cognitive process in detail into four activities at six Bloom’s 

levels.
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Secondly, according to the work of Pennington (1987) [111], and Von 

Mayrhauser and Vans (1998) [160], none of the existing models can explain the 

entire program comprehension process. Their claim that programmers would 

sometimes use the top-down approach, and sometimes use the bottom-up 

approach seems to be unreasonable. Our learning model is more complete and in 

greater detail. By integrating both top-down and bottom-up models it explains all the 

program comprehension processes (see Figure 4.1).

Thirdly, it seems that most existing models themselves cannot explain well 

the differences between experts and novices. In order to do so, several models 

such as bottom-up and top-down, have to be used. This again, appears 

unreasonable and inappropriate. For example, Burkhardt et al. (1998) [26] found out 

that experts often used top-down, while novices rarely used the top-down approach, 

but instead using bottom-up approach.

The efficiency of program understanding relies on several factors, but the 

programmer’s experience in program comprehension is as crucial as his/her domain 

knowledge and relevant programming knowledge. The experience and the levels of 

domain knowledge obtained affect the process of creating and testing hypothesis. A 

programmer who is lacking in knowledge of the program’s domain may not be able 

to synthesize and understand the code. This supports Brooks’ emphasis on the 

importance of domain knowledge in the understanding process [24]. Consequently, 

our model can clearly explain the gap between experts and novices, one which 

seems a difficult task for some existing models.
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6. Evaluation
5. Synthesis
4. Analysis

3. Application
2. Comprehension 

1. Recognition

Figure 4.1:  Comprehension strategies and their relationship with 
Bloom’s levels

Bottom-up
comprehension

Top-down
comprehension

In summary, compared with our model, the top-down model mainly 

emphasizes synthesis, hypothesis and evaluation, only three of the Bloom’s levels. 

The bottom-up model strengthens the knowledge, comprehension and application -

the three lower levels of Bloom’s taxonomy (see Figure 4.1). 

The programmer is able to obtain and to understand the knowledge so as to 

synthesize information and to generate hypotheses, i.e. moving from lower levels of 

Bloom’s levels to higher levels to form the understanding process. It is not possible 

for the programmer to do so without knowledge, which coincides with the work done 

by Soloway et al (1988) [142].  Soloway et al (1988) [142] found that the process of 

programming understanding is a cycle that includes reading the code (obtaining the 

knowledge), raising questions (apply knowledge), making a conjecture (synthesize 

and generate hypothesis) and searching code for answers (evaluation).  The 

process is also called the read-question-conjecture-search cycle, which well fit in 

with the learning levels in our learning model. 
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 CHAPTER 5

CASE STUDY ON INCREMENTAL SOFTWARE DEVELOPMENT

5.1 Introduction

Incremental software development and subsequent program evolution 

embraces change request analysis, impact analysis, design, coding, debugging and 

testing. Programmers often start with an existing program or a program framework 

that covers fundamental functionality, and then add and delete properties to and 

from it. Thus, the cognitive process is central and important. Since the 

programmers at different levels might learn differently [141], finding out the 

differences in terms of cognitive activities is an essential part of these studies.

In this work, we used our new empirical approach including the dialog-based 

protocol, software screen-capturing, and the self-directed learning theory to study 

programmer learning and cognitive process during the development of a bowling 

program that is a part of the Martin and Koss’ case study [93]. We replicated this 

program development of ten intermediate level pairs using test-first driven and 

refactoring techniques. Pair programming entails a conversation at many levels 

(change request analysis, design, coding, debugging and testing), thus providing an 

opportunity to analyze what that knowledge is consisted of and what cognitive 

processes are involved. The test-first technique [10] requires that programmers 

define the unit tests before writing the unit code. It forces the programmers to define 

the exact functionality of each method which means that the system will be 
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automatically tested as it is developed. Refactoring transforms the source code so 

that it is more readable and easier to update [10]. We paid particular attention to the 

differences between theirs and the experts’ learning and the cognitive activities that 

were involved. The purpose of the case study is to either falsify or to prove the 

hypotheses which were stated in Chapter 1 and are repeated here:

1 “There are some better ways than think-aloud protocol to study the cognitive 

activities in software engineering”

2 “The combination of learning theories can be used to better study the cognitive 

activities during software engineering process”

3 “Experts and intermediate programmers do follow the same cognitive processes 

when they perform incremental software development”

4 “Intermediate programmers follow a similar cognitive process during incremental 

software development”

Since we used a new empirical technique, we also carefully observed the 

strengths and weaknesses of this technique which is discussed in Chapter 8 in 

detail.

5.2 Case Study Design

We conducted case study on ten pairs. Partial results were published in [174]

and [177] [176]. The dialogue of Martin and Koss was recorded and a reenactment 

of that pair programming episode was published in [93].
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5.2.1 Participants

Table 5.1:  Programmers’ background and the date of experiment

Pair Level Month
Pair I Graduate March 2004
Pair II Graduate March 2004
Pair III Graduate February 2005
Pair IV Graduate February 2005
Pair V Graduate February 2005
Pair VI Graduate February 2005
Pair VII Undergraduate March 2005
Pair VIII Undergraduate March 2005

All participants are from the Department of Computer Science, Wayne State 

University. In March 2004, four graduate students were randomly selected from the 

graduate class CSC 7110 (Software Engineering Environments) which had 22

students in total. In February, 2005, all 12 graduate students of the CSC 7110 

course were asked to take part in the case study. Four advanced undergraduate 

students were selected from a class of 24 in CSC 4110 – Software Engineering in 

March, 2005. All participants were classified as intermediate level programmers as 

according to their programming ability. They had programming experience with C, 

C++, and Java, but they had never used pair programming, test-first, or refactoring 

practices. 

The data from two pairs were rejected as invalid, and this will be further 

discussed in Chapter 8. Table 5.1 shows the basic information of the remaining 

eight pairs of programmers whose data are valid. The case study compared the 
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results of these eight pairs to earlier published results of the expert programmers 

Martin and Koss [93]. 

5.2.2 Material

The task to be solved in the case study is to implement an application which 

records the Bowling scores for a bowling game.  It requires the programmer pair to 

understand both domain concepts and programming concepts. We can make a 

comparison between the data collected during our case study and the original work 

done by Martin and Koss [93]. Martin and Koss’ work was treated as the experts’ 

work, since they had over 15 years of programming experience and a considerable 

background in pair programming, test-first, and refactoring practices. All the 

participants worked on the same task. The intermediate programmers were not 

originally familiar with the bowling domain, nor did they know the solution of Martin 

and Koss.

The simple requirements for the bowling application are described verbally 

as follows:

“To write an application that keeps track of a bowling league. The program 

needs to record all the games, and accurately score of each game, with the 

following simple bowling rules: 

 Bowling is played on a lane with 10 pins at the end that the player should 

knock down with a ball he/she throws and makes rolling on the lane.

 The placing of the ten pins makes up what we call a frame.
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 The object of the game is to knock down as many pins as the player can.

 A game is scored on a single line on the score sheet. The line is divided into 

10 boxes or "frames".

 Scoring of the game proceeds from left to right, with the running total of pins 

knocked down noted in each frame.

 The player starts bowling each frame with all 10 pins standing. The player 

has two "throws" with aims to knock down all 10 pins for the current frame.

 If the player knocks down all the pins on the first throw, it is called a "strike". 

The number of pins knocked down by the next two throws is added as "bonus" 

points for this frame.

 If the player knocks down all the pins on the second throw, it's called a 

"spare". The number of pins knocked down with the next throw will be added as 

"bonus" points for this frame.

 If the player does not knock down all 10 pins in a frame after two throws, the 

number of pins knocked down is added to the running total marked in the frame.

 This counting may demand one or two extra throws to complete the score of 

the 10th frame (one extra throw in case of spare and two in case of strike). Extra 

throws means extra frames (two if the 10th frame is strike and the first extra throw is 

a strike too)”.

Figure 5.1 shows how the bowling score is recorded. Each frame except the 

tenth has one little square in the upper right, where scoring for the frame's own 

throws is kept. The first throw is written outside the little square, the second is 

recorded inside the little square, and the cumulative score goes in the big lower part 
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of the square. If it is a “spare”, then the second throw is marked with dark triangle. If 

it is a “strike”, then a cross is marked in the second throw.

Figure 5.1:  An example of scoring bowling games

5.2.3 Procedures

As mentioned earlier, the case study was carried out in March 2004, 

February 2005, and March 2005. 

Since the programmers were new to dialog-based protocol, test-first 

programming and refactoring and it is particularly difficult for novices to adopt the 

test-first [101], the programmers were provided with a training session and reading 

materials on pair programming, test-first, and refactoring techniques prior to the 

case study. As a part of the training, they were asked to write a simple program 

using the Eclipse environment and JUnit [63] in order to understand the procedure 

and to familiarize themselves with those techniques and corresponding tools.

The case study was conducted in software engineering laboratory of Wayne 

State University. We videotaped the first two pairs. For the rest of pairs, we used a 

free software “Microsoft Producer” that allowed us to capture computer screens and 

record voice at the same time. The author acted as the mentor and monitored the 

process, recorded the data, and provided the programmers with a description of the 
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bowling rules. The mentor also answered the technical questions related to Eclipse 

compiler and JUnit testing tool [63], but did not give any guidance on the design and 

implementation of the program. The programmers were advised to speak loudly and 

communicate effectively. 

The case study was divided into several sessions, each of which lasted 

about two hours.

Once the recording sessions were finished, recordings were transcribed and 

then analyzed.  The dialogue was decomposed into episodes using the method 

described in Chapter 4. 

Self-directed learning theory was employed for analyzing this observational 

data.  The first analysis of the protocols involved assignment of activity types as 

specified by the self-directed learning model.  We classified each episode according 

to the four cognitive activities (i.e. absorption, denial, reorganization, and expulsion) 

by using characteristic verbs defined in the self-directed learning model [174].

As a result of these activities, concepts were added or excluded from the 

existing knowledge.  For example, during absorption, new concepts are added to 

the knowledge; during expulsion, concepts are excluded from the knowledge.  The 

number of concepts in the knowledge was recorded for each episode.
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Figure 5.2: The number of concepts in the knowledge of each pair
during incremental software development

Then, the Bloom’s levels (i.e. recognition, comprehension, application, 

analysis, synthesis, and evaluation) were assigned to each episode also through 

the use of characteristic verbs (see Table 2.2).  The final data was then computed 

as the frequencies of occurrences in episodes for each activity type and for each 

Bloom’s level.

5.3 Case Study Result

The intermediate pairs took from two and half to five hours to complete the 
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task. All programs were completed and covered all significant test cases; the size 

ranged from two to six classes with a total of 19 to 28 methods.

Table 5.2:  Main characteristics of the programs and the dialogs in the case study

Marti
n and 
Koss

Pair
 I

Pair 
II

Pair 
III

Pair
IV

Pair 
V

Pair 
VI

Pair 
VII

Pair
VIII

Average 
intermedi
ate pairs

DD for 
intermediat
e pairs

Lines of code 215 246 235 222 232 230 240 360 249 251.7 44.6

Number of 
class members 

36 26 19 25 23 27 26 24 28 24.7 2.8

Number of 
classes

3 2 2 3 4 2 6 4 4 3.3 1.4

Number of 
domain 
concepts 
discussed 
before coding 
started

9 2 4 3 5 6 2 6 2 3.7 1.8

Maximum 
number of 
design 
decisions

43 33 24 32 38 47 45 36 43 37.2 7.7

Number of 
programming 
concepts the 
end of the task

30 33 24 32 37 47 45 36 43 37.1 7.7

Number of 
refactorings

16 5 2 9 3 2 3 0 2 3.2 2.7

Number of test 
cases 

10 10 8 9 10 8 10 10 10 9.2 0.9

Number of 
episodes

84 65 45 62 69 67 66 64 60 62.3 7.5

Number 
episodes 
before coding

3 1 4 1 3 6 1 2 1 2.3 1.8

Time used 
(minutes)

X 288 330 146 307 294 295 154 245 257.4 70.3

Figure 5.2 shows the changing numbers of programming concepts in the 

knowledge. Table 5.2 summarizes the characteristics of the developed programs 

and of their respective dialogues. The final UML class diagrams [56] of the Martin 

and Koss’ program and our pairs are shown in Appendix A and Appendix B. Table 

5.3 and Table 5.4 show the detailed distribution of four cognitive activities at 
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different Bloom levels from the dialogue of Martin and Koss, and the cumulative 

data from the dialogues of all eight intermediate pairs, respectively. Table 5.5 and 

Table 5.6 present the data for individual pairs. The detail data for each pair is 

shown in Appendix B.

Table 5.3:  The distribution of the cognitive activities and Bloom levels 
throughout the recorded episodes for Martin and Koss 

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0 0 0 0 0
Comprehension 20

23.8%
2 

2.4%
5 

5.9%
1

1.2%
28

33.3%
Application 9

10.8%
2 

2.4%
5 

5.9%
2 

2.4%
18 

21.5%
Analysis 17 

20.2%
1 

1.2%
5 

5.9%
3 

3.6%
26 

30.9%
Synthesis 11

13.1%
0

0.00%
1 

1.2%
0 

0.0%
12

14.3%
Evaluation 0 0 0 0 0
Total 57

67.9%
5 

6.0%
16 

18.9%
6 

7.2%
84 

100%

Observations of Programming Process

Martin and Koss’ program has a better design and their class members are 

much more elegant and readable than the classes produced by intermediate 

programmers.  There is also a Scorer class separated from the class Game to 

calculate the scores for different cases such as spare, strike and normal throws, 

while none of the intermediate pairs has similar design.  For example, Pair I used 

three arrays to store the scores, which turned out to be less efficient.  The program 

implemented by pair II was hard to read with less meaningful variable names, and 
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other pairs had similar design problems. Experts implemented the program with 36 

class members including instance variables and methods, while intermediate 

programmers had from 19 to 28 class members. The experts’ program contained 

fewer numbers of lines of code (215) than those by intermediate programmer which 

ranged from 230 to 360. 

Table 5.4:  The distribution of the cognitive activities and Bloom levels throughout the 
recorded episodes for the eight intermediate programmer pairs

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0 0 0 0 0 
Comprehension 120

24.1%
1 

0.2%
4 

0.8%
2 

0.4%
127

25.5%
Application 171

34.3%
1 

0.2%
16 

3.2%
5 

1.0%
193

38.7%
Analysis 77 

15.4%
0 

0.0%
6 

1.2%
3 

0.6%
86 

17.2%
Synthesis 93 

18.6%
0 

0.0%
0

0.0%
0 

0.0%
93 

18.6%
Evaluation 0 0 0 0 0
Total 461

92.4%
2 

0.4%
26 

5.2%
10 

2.0%
499

100%

All intermediate pairs kept every single class they created until the end. One 

programmer pair created two classes at the beginning and kept them to the end, 

while another pair defined two classes at the beginning and created one new class 

later.  However, experts created five classes at the beginning but only kept two of 

them to the end.  A big drop in the numbers of valid design decisions in the Martin 

and Koss’ work is indicated in Figure 5.2.  This indicates that the expert 

programmers more readily abandoned obsolete or inadequate concepts, while the 
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intermediate programmers tried to fit the new design decisions into their previous 

design decisions and were reluctant to change them.  

Table 5.5:  The distribution of the cognitive activities for individual pairs 

Pair
 I

Pair
II

Pair 
III

Pair
IV

Pair 
V

Pair 
VI

Pair 
VII

Pair 
VIII

Average SD 

Absorption 57
87.7
%

42 
93.3
%

52 
83.9
%

65
94.2
%

64
95.5
%

61 
92.4
%

63
98.4
%

57
95.0
%

57.6
92.5%

7.7

Denial 0
0%

1
2.2%

1
1.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0.25
0.4%

0.5

Reorganization 5
7.7%

2
4.5%

9 
14.5
%

3
4.4%

2
3.0%

3
4.6%

0
0.0%

2
3.3%

3.25
5.3%

2.7

Expulsion 3 
4.6%

0
0.0%

0
0.0%

1
1.4%

1 
1.5%

2 
3.0%

1
1.6%

1
1.7%

1.12
1.8%

1.0

Total 65 45 62 69 67 66 64 60 62.3 7.5

There were several sudden increases of numbers of concepts in the work of 

intermediate pairs as shown in Figure 5.2. This was caused by the fact that the 

intermediate programmers conducted a discussion of several concepts in one 

episode, while the experts referred to one concept at a time. 

The discourse in the Martin and Koss dialogue was more coherent and richer 

than the dialogues of intermediate pairs since Martin and Koss’ dialogue was edited 

from the original recorded data and phrasing is more mature and better articulated. 

Intermediate pairs used a lot of references to the source code, which were missing 

in the Martin and Koss dialogue.

The intermediate programmers applied refactoring several times at the 

beginning by renaming the variables, but they did not use more sophisticated 

refactorings like methods or class extraction [57].  Experts refactored the code when 
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the application was close to completion and they performed more advanced 

refactorings such as reducing the scope of variables and extracting methods.  They 

also reduced the number of concepts towards the end of the process as a “final 

cleanup”. As a result, their program was more elegant and comprehensible. 

However, as indicated by Figure 5.2, none of the intermediate pairs did the same 

thing.

Table 5.1 shows that both expert and intermediate programmers created a 

similar number of test cases. This indicates the intermediate programmers 

understood the test-first technique well and applied it as effectively as did the 

experts. 

Observations of Cognitive Activities

Table 5.6:  The distribution of the Bloom levels for individual pairs

Pair
 I

Pair 
II

Pair
 III

Pair
IV

Pair 
V

Pair 
VI

Pair 
VII

Pair 
VIII

Average SD

Recognition 0 0 0 0 0 0 0 0 0 0

Comprehension 20
30.7%

14
31.1%

13
21.0%

16
23.2%

16
23.9%

13
19.7%

19
29.7%

15
25.3%

15.7
25.3%

2.6

Application 23
35.4%

20
44.5%

22
35.5%

28
40.6%

26
38.8%

25
37.9%

25
39.1%

25
41.7%

24.3
38.7%

2.5

Analysis 10
15.4%

6
13.3%

15
24.2%

11
15.9%

14
20.9%

14
21.2%

7
10.9%

8
13.3%

10.6
17.2%

3.5

Synthesis 12
18.5%

5
11.1%

12
19.3%

14
20.3%

11
16.4%

14
21.2%

13
20.3%

12
20.0%

11.6
18.8%

2.9

Evaluation 0 0 0 0 0 0 0 0 0 0

Total 65 45 62 69 67 66 64 60 62.2 7.5

All intermediate pairs started the dialog with a discussion of two to six 

domain concepts in about two episodes before coding started. In comparison, 
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expert programmers discussed nine domain concepts in three episodes before the 

coding started. Intermediate programmers discussed the domain concepts and 

programming concepts alternately at the beginning, while experts concentrated the 

discussion on the domain concepts. The fact that there are 84 episodes in the 

expert’s work as compared to only 45 to 69 episodes in the intermediate 

programmers’ work also indicates that the experts tend to switch concepts during 

the discussion more frequently than do intermediate programmers.

In the case study, the absorption activity dominated the programming 

process from the beginning to the end.  This coincides with the fact that the most 

common goal of programmers during incremental software development is to create 

programming concepts that result in application classes and methods. For the 

intermediate programmers, absorption ranged from 84% to 98% of all activities with 

an average of 92.4%, while there was 67.87% in the Martin and Koss’ work (see 

Table 5.4). This could indicate that compared to experts, the intermediate 

programmers have to absorb more knowledge in order to complete the 

programming task. 

Most absorption activities occur at the lower Bloom levels such as 

comprehension and application, particularly for the intermediate programmers, who 

spent more than 58% of total activities on absorption at comprehension and 

application levels. Experts spent only 34% absorption activity at lower levels of 

Bloom taxonomy. Reorganization is the second most common activity because it is 

closely related to refactoring, and refactoring was a required part of the 

development process. Experts spent 19% of their efforts in reorganization activity, 
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while intermediate programmers had three episodes (5% of total) classified as 

reorganization (see Table 5.5).

Only a few episodes were classified as denial or expulsion, indicating that 

retraction of concepts from the program and/or rejection of the change requests 

seldom happens. Experts did expulsion in 7% of the episodes, pairs II and III did no 

expulsion at all, while pair I did expulsion in three episodes. The remaining pairs did 

expulsion in only one or two episodes. On average, the intermediate programmers 

did expulsion in only 1.8% of the episodes.

Of all episodes, about 64% were classified at the lower Bloom levels 

(recognition, comprehension, and application) in the dialogues of intermediate pairs, 

as compared to 54.7% of Martin and Koss (see Table 5.6 and Table 5.3). This 

indicates that intermediate programmers spent more time in understanding and 

applying the knowledge while experts took part of the knowledge as granted. On the 

other hand, experts spent more than 45% activities at higher Bloom levels (analysis, 

synthesis, and evaluation), compared to only 36% of intermediate programmers. It 

seems that experts know better how to analyze the knowledge, how to apply 

strategies to use the knowledge and to generate test cases.

These results, together with the comparison of the numbers of absorption 

activities, and the numbers of episodes classified at lower or higher levels of Bloom 

taxonomy in our replicated case study, coincide with Gilmore’s observations [66]

that novices and intermediates often take longer time to accumulate their 

knowledge than experts and even if they have as much knowledge as experts, they 
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may still need a longer time to finish their programming tasks, as they are not 

familiar with the strategies to use the knowledge. 

No episodes were classified at the top (i.e. evaluation) or at the bottom (i.e.

recognition) of Bloom taxonomy in our case study. This is different from a case 

study on program debugging [173] (see next Chapter), where we identified all six 

levels of Bloom taxonomy. 

Recognition is the pre-requisite for the activities at comprehension and other 

higher levels.  It is the main reason that it does not explicitly appear in our data.  An 

additional reason is due to the way we split the dialogue into episodes.

The absence of evaluation episode in the case study may indicate the 

differences in the cognitive difficulties among different software engineering 

processes. We believe that the programming activity in this case study was quite 

simple and the size of the domain and the resulting software were small.  During 

more complex software engineering tasks (i.e. debugging, reverse engineering, 

reengineering, etc.) more hypothesis-driven activities are performed, which would 

be classified at the top level in Bloom’s taxonomy (i.e. evaluation), which has been 

found in our case study on program debugging [173].

Although many differences exist between the results of the experts and 

intermediate programmers, there are some similarities as well, such as the numbers 

of test cases created, and the numbers of class members.  We believe that these 

numbers reflect the nature of the completed application rather than the expertise 

and therefore they were the same for both experts and the intermediate 

programmers.
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5.4 Threats to Validity of the Case Study

This section lists threats to the validity of the case study [178], which could 

affect the generality and utility of the conclusions. 

We used twenty graduate and advanced undergraduate students as 

subjects. Although students have a similar technical ability as intermediate level 

industry professionals, they might perform the tasks differently. A larger number of 

subjects might impact the results. 

The problem solved by the programmers was relatively small. All the 

programmer pairs spent only two and half to five hours. A more complex problem or 

a problem in a different domain may produce different results. 

The episodes were separated and classified manually; different authors may 

separate and classify episodes differently and a different separation criterion might 

yield different results. 

Other threats associated with the empirical techniques employed are 

discussed in Chapter 8 in more detail. 

5.5 Summary of the Case Study

In order to study cognitive process and programmer learning, we developed 

an empirical method that includes dialog-based protocol, software screen capturing 

and self-directed learning theory. Using this new approach, we conducted a case 
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study of expert and intermediate programmers during incremental software 

development in order to validate our novel approach and to study the cognitive 

process involved. 

Our case study showed that the self-directed learning model can be used to 

study the cognitive activities during incremental software development. Our 

experience in experiment shows that dialog-based protocol is an exciting approach 

and reduces the placebo effect [127] and Hawthorne effect [1]. We also found that 

the Martin and Koss exercise is duplicable with different types of programmers. All 

intermediate level programmers followed a similar cognitive process with a similar 

distribution of the cognitive activities and Bloom levels. 

Using incremental software development with the test-first approach, 

absorption is the dominant activity behind the process.  Reorganization often 

occurs, but denial and expulsion occasionally appear.  Four out of six of Bloom’s 

levels were identified in the case study.

We also found that experts discussed related domain concepts more 

extensively before the coding started. The intermediate programmers often 

discussed several concepts at the same time, while experts mostly concentrated on 

one concept.  Experts, unlike intermediates, were also willing to recognize and 

reconsider inappropriate design decisions. The experts were more efficient and the 

program written had a better design.  Experts had more absorption activities at 

higher Bloom levels such as analysis and synthesis than intermediates did, while 

the latter had most absorption activities occurring at the lower Bloom levels such as 

comprehension and application. Experts used more denial, reorganization and 
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expulsion activities than intermediate programmers.  Experts took part of knowledge 

as granted, knew better how to analyze the knowledge, and how to apply strategies 

to use the knowledge, therefore, they spent more time analyzing the knowledge and 

generating test cases, as compared to intermediate programmers who spent more 

time learning the knowledge instead. 
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CHAPTER 6

CASE STUDY ON PROGRAM DEBUGGING

6.1 Introduction 

A bug is an error in a program that causes the program’s behavior to be 

inconsistent with the programmer’s or the user’s expectations. It manifests itself 

during compile-time or run-time. 

Debugging is the process of locating and correcting bugs. These errors can 

be made in various stages of software development or evolution, such as 

specification, implementation, or debugging of earlier errors [84].   

Typical activities in the debugging process include program diagnosis, error 

detection, error removal, and testing [179]. Program diagnosis is analogous to a 

diagnosis by a doctor. The program displays some “symptoms” and the programmer 

needs to find the “disease” which causes the symptoms. The programmer runs and 

tests the program to obtain appropriate clues, analyzes the symptoms, and uses 

diagnostic knowledge to generate reasonable hypotheses. The hypotheses are then 

tested in experiments. The experiments can either support or contradict the 

hypotheses. The process is repeated until the programmer narrows down the bug 

location by using the isolation strategy (see Figure 6.1). After “treating” the disease 

(correcting the bug), and testing the program, the programmer makes sure that the 

program is now correct and free from the bug. If not, the process will be repeated 

until the bug is completely corrected.
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In order to make a correct bug diagnosis, programmer must be able to:

 Obtain and understand the meaning of the symptoms of the bugging program

 Identify the appropriate code segments or components involved in the bug

 Identify the process in which the bug is occurring

 Know the most likely cause of the bug

 Evaluate the evidence and select the strategy of debugging

Initialize hypothesis set

Modify hypothesis set

Select a hypothesis 

Verify hypothesis 

Bug 
located
?

No

Yes

Figure 6.1: A debugging process model (modified from [3])

Program debugging is a common part of software processes. It is an 

accepted fact that software engineering processes require a significant amount of 

time for debugging and infected program. In turn, the debugging contains program 
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comprehension and testing as the central tasks [22] [137]. Therefore, program 

debugging is a cognitive-oriented process, and studying the cognitive activities 

involved becomes very important.

6.2 Case Study Design 

In order to understand the cognitive activities involved in debugging process, 

we conducted a case study [178].  The case study design is based on the following 

hypothesis – “The new learning model based on constructivist learning and Bloom’s 

Taxonomy is applicable for studying the cognitive activities in program debugging”, 

as verified by the case study [172] [173].

In order to validate the hypothesis, we chose one previous case study of a 

system failure in a COTS (Commercial-Off-the-Shelf) Based Information 

System[75]. The additional details are in [75].

COTS systems consist of individual components that may be developed by 

different companies. The probability of failure increases due to integration of 

individual components. Therefore, debugging a COTS system requires not only the 

diagnostic skills, but also the knowledge of underlying component technologies. 

The case study deals with a system that consists of a COTS Web server and 

a relational database management system, each provided by a separate vendor. 

The application was expected to be used by multiple customers, but a serious 

problem was reported when it was deployed for the first time. The symptoms of the 
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problem were that the system was either too slow or was not responding at all to 

user requests. The purpose of the case study was to find and fix the bug.

The programmer was provided with the symptoms “system not responding or 

too slow”. Based on his experience with the architecture of similar systems, the 

programmer considered several possible causes. He decided that the most likely 

cause is the slow database query that slows down access to the web server. The 

slow web server then blocks access to the site. 

Based on this assumption, the programmer used a “browser skeleton” to 

validate this hypothesis. The browser skeleton is a test harness in which a program 

simulates customers connecting to the web server. The average response time was 

recorded after a browser skeleton was launched. Then the actual web browser was 

launched to connect to the server and the response time of the server was 

recorded. This turned out to be 100 times longer than the response time for the 

browser skeleton. This test was repeated several times to make sure that the 

results were stable and repeatable. The test results supported the hypothesis that 

queries to the database slow down access to the web server.  The programmer had 

narrowed down the cause of the problem, but further work is needed. 

The next hypothesis was that the web server could not spawn child 

processes to handle customer requests. Based on this assumption, another test 

was conducted using the same test harness to observe the state of all processes. If 

the hypothesis were true, the number of processes would not increase after a 

certain period of time. However, the result did show that some new processes were 

spawned, and the overall number of processes increased. Therefore, the second 
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hypothesis was not supported by the evidence. Nonetheless, a useful observation 

was obtained: One of the child processes was accumulating CPU time and others 

were not. A further investigation was conducted to see what each child was doing 

during the browser request process. It was found that only one child works properly 

and other children tried to set a lock on a file that was already locked by another 

process. Therefore, there was a block or race condition that put other child 

processes into an infinite loop and blocked their execution. 

After reading the Unix manual and going through documentation and 

configuration settings, the programmer noticed that the web server uses system 

calls getcontext and setcontext, which are used in user-level threaded applications.

The programmer knew that the web server was actually a multi-threaded application 

with user-level threads and found that the child process was not threading as 

expected. Therefore a further hypothesis was made that the actual COTS server 

agent was not multi-threaded and forced the web server to become blocked. 

The server agent provides communication between the web server and the 

relational database management system. The present server agent provided by the 

database vendor is used with the www server-side API, although it also supports the 

Common Gateway Interface (CGI). If the above hypothesis is true, as CGI supports 

multiple threading, then using the CGI version of the same agent instead of www 

server-side API version of the server agent would be the right solution. A new test 

was proposed after the www server-side API version of the server agent had been 

replaced with CGI version. The test harness and actual web browser were used 

again. The result demonstrated that the web server was no longer blocked after the 
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replacement. The problem was diagnosed, a replacement was done and a re-test 

was conducted. Therefore, the debugging was successful and the bug was fixed. 

We separated and classified the debugging process into twenty-eight 

episodes according to such a rule that, if programmers referred different concepts, 

a new episode was assigned (see Appendix C). The detailed description of each 

episode is shown in Appendix C.  Then we used self-directed learning theory as the 

code scheme to analyze the data as described in Chapter 4.

6.3 Case Study Result

Table 6.1 lists the distribution of the cognitive activities and Bloom' levels in 

this case study. Based on the categorization, the programmer’s actions reflect all 

levels of Bloom’s hierarchy, starting with recognition (or knowledge) and 

comprehension, through application and analysis, and finally synthesis and 

evaluation. 

In terms of cognitive activities, the most frequent activity is absorption which 

takes more than 67% of total activities during program debugging, since 

programmers try to understand program in order to perform debugging. Absorption 

is distributed at various Bloom levels, but there are more cases at comprehension 

level which takes 25% of total activities. There are also some representatives for 

reorganization distributed on comprehension, application, synthesis and evaluation 

Bloom’s levels. No denial was found in this case study. Expulsion only occurs at the 

recognition (or knowledge) level.
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Activities at the comprehension level occurred with the most frequency, 

taking up to 28.56% of total activities. The distributions of activities in application, 

analysis, synthesis and evaluation levels are similar.

Knowledge level cognition is the prerequisite for program debugging.  A 

programmer must be able to recognize the multi-tier architecture of web application, 

in order to identify the meaning of the output, and to define the test harness. If the 

programmer does not have this knowledge, it is not possible to perform debugging. 

Armed with this knowledge, the programmer can move to the next taxonomy 

level – comprehension. The programmer should be able to comprehend how the 

client-server works, to explain how SQL queries work, to illustrate how the test 

harness replaces the web server, and to interpret the race condition for two or more 

threads. 

The next taxonomy level is application. By applying the knowledge of three-

tier architecture, the programmer attempts to solve the problem by assuming that it 

is the slow response to SQL query. The programmer also applies the knowledge of 

how spawning child processes handle each web request. 

After the knowledge has been applied, the programmer analyzes the 

relationships of different pieces of information. For example, after obtaining the first 

test result and observing the amount of time used for each response, the 

programmer contrasts the response time with the actual web browser and the 

response time with the browser skeleton, and finds that the first is 100 times longer.  

During debugging, there are several examples of synthesis. The programmer 

proposes that the hypothesis “slow database query slows down the access to the 
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web server”, then “the web server can not spawn child process”, then later “not all 

child processes spawned were handling inbound requests” and finally “the COTS 

server agent was not multi-threaded and forced the web server to block”. All these 

hypotheses are based on a synthesis of all the available information. 

Table 6.1: The distributions of the cognitive activities and Bloom’s levels in the case 
study

Assimilation Accommodation

Absorption Denial Reorganization Expulsion

Total

Knowledge 1
3.6%

0
0%

0
0%

1
3.6%

2
7.1%

Comprehension 7
25%

0
0%

1
3.6%

0
0%

8
28.6%

Application 4
14.3%

0
0%

1
3.6%

0
0%

5
17.9%

Analysis 4
14.3%

0
0%

0
0%

0
0%

4
14.3%

Synthesis 1
3.6%

0
0%

4
14.3%

0
0%

5
17.9%

Evaluation 2
7.1%

0
0%

2
7.1%

0
0%

4
14.2%

Total 19
67.8%

0
0%

8
28.6%

1
3.6%

28
100%

On the evaluation level, the programmer validates whether the hypothesis 

can correctly explain the bug. For example, the programmer validates the 

hypothesis “the COTS server agent was not multi-threaded and forced the web 

server to block”. In a similar vein, the programmer rejects the second hypothesis 

“web server could not spawn child processes to handle customer request”.  

In order to show it more clearly, we extract some examples for each Bloom’s 

level and list them in Table 6.2. In program debugging, knowledge and 
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comprehension are prerequisites, as the programmer has obtained them prior to 

debugging the program. The programmer was familiar with programming 

languages, technologies, and client-server architecture, and was able to obtain the 

information such as program output. The programmer moved from one level to 

another in increasing order of complexity. Without establishing a firm footing, it 

would be difficult to proceed to the next level of cognition.

Table 6.2: Examples at each cognitive level in the case study

Level Case study behaviors

Knowledge Structure of  the program, recognition of bug symptoms

Comprehension Understanding how client-server and SQL queries work

Application Slow response to SQL query causes slow  response of the system and 
suggests that no child processes are created

Analysis One child process blocks other child processes or the web server does not 
create multiple processes, which forces no system response 

Synthesis Slow response from web server means slow access to SQL query, and one 
child process does not handle multiple request

Evaluation Checking if the original diagnosis explains the entire discovery, Any other 
possibilities? After replacing the server agent Retest the system with test 
harness and actual browser

Program debugging might be a complicated process, one which requires the 

programmer to use all six Bloom’s levels. Experts have already had the knowledge 

and the ability for comprehension; therefore, their efforts mainly concentrate on 

application, analysis, synthesis and evaluation. We speculate that this is the cause 

of the large gap between the novices and experts, and this coincides with the work 

of von Mayrhauser and Vans (1997) [159], who found that programmers who have 
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more domain knowledge would perform program comprehension at a higher-level 

abstraction. Taking examples from our case study, we can find that novices might 

have trouble identifying the cause of the slow response to SQL query, whereas 

experts immediately recognize it as the problem in creating child process. Once 

they have accumulated enough knowledge, novice programmers will move more 

easily to higher levels such as analysis and synthesis.

6.4 Threats to the Case Study

This case study has the following limitations.  The case study was based on 

a previous case study. The description of the case study might have been modified 

for publication. If the data was obtained from think-aloud protocol, the results might 

be slightly different. The problem solved in the case study is a small web

application. A more complex problem or problems in different domains may produce 

different results.

6.5 Summary of the Case Study

We used our self-directed learning model to conduct a case study on the 

program debugging where a large amount of time was spent on program 

comprehension. The case study result showed that during program debugging, 

absorption is the driving activity that occurs most frequently and at all six learning 

levels. Reorganization also appears. Expulsion only happens at recognition 
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(knowledge) level. No denial activity is found in this case study. All six Bloom’s 

levels have been identified in the case study. Activities at comprehension level take 

the most with 28.56% of total activities. The distribution of activities in application, 

analysis, synthesis and evaluation is similar. During program debugging, 

programmers apply the four cognitive activities at six Bloom’ learning levels in order 

to understand the program and to locate the bug and to fix it. Therefore, the case 

study has validated the hypotheses stated in the case study design.
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CHAPTER 7

CASE STUDY ON SOFTWARE EVOLUTION

7.1 Introduction

7.1.1 Software Evolution

Software evolution refers to the maintenance tasks, one of the important 

stages of software lifecycle [116]. During software evolution, programmers add 

new functionality into the existing system of iterated tasks. This process is called 

the incremental change. Each increment change is based on a change 

request[118]. 

Lehman (1998) [88] emphasized that the software evolution becomes 

very difficult or impossible when software increases its size and that clear steps 

should be taken in order to keep system stable. Rajlich (2000, 2004) [116] [118]

identified three steps for achieving incremental change: concept location, impact 

analysis and change propagation. Concept location is the first part of software 

maintenance task and it reconstructs mapping between the application domain 

and implementation [28]. The purpose is to find the relevant concepts in the 

code. Impact analysis is to determine the sets of classes that incremental 

change may affect. Change propagation refers to the process of a programmer 

changing a class and then visiting all classes in interaction with the changed 

class in order to investigate whether or not they also need to be changed [116]. 
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While previous papers reported experience with waterfall development, 

software evolution and maintenance were listed among the topics of the body of 

software engineering knowledge (SEEK) proposed by IEEE-CS and ACM [80].

This is the basis for the education of software engineers. Since software 

maintenance takes a substantial part of the software costs and most software 

engineers are actually maintaining the existing system, it is beneficial for 

students to work on evolution and maintenance projects. Pair programming 

described in the section 7.2 exclusively deals with software evolution or 

maintenance.

7.1.2 Project in Software Engineering Classes

Software engineering is an important part of computer science curriculum 

at both undergraduate and graduate levels. Undergraduate classes often deal 

with the fundamentals of software development which include such tasks as the 

waterfall development model, whilst graduate level offers advanced topics 

including software evolution and maintenance. 

Software engineering in industry is a process of collaboration because 

most software is developed by a team. That is the reason why there is a team 

project component in the software engineering classes. According to [20], 

projects can allow student to learn to develop complex systems, to experience 

simulated real-world development environment, to get a chance to learn from 
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each other, to share their skills and knowledge, and to learn how to handle 

scheduling and other problems. 

The traditional way of organizing the project in an undergraduate software 

engineering class is to form groups with 4-6 students and to use the waterfall 

software development life cycle to develop a software prototype [68], as does 

the graduate software engineering class, which requires normally a team work in 

a project.

Sommervill (1996) [143] pointed out the critical goals of software 

engineering courses: to make students practice “programming in the large”, to 

let them practice concepts learned in classroom, and to learn how to use 

software tools. Peslak et al. (2004) [113] proposed to use collaborative methods 

to simulate the industrial environment. 

According to Gnatz (2002) [68], the course projects using a group larger 

than 4 people often fail as a result of issues such as scheduling, and personal 

conflicts. The failure of projects mainly comes from inefficient exchange of 

information since too many people in a group sometimes cause substantial 

communication overhead. In fact, the projects are often completed by a few 

advanced students in the group, and the rest of the team learns less [68]. 

7.1.3 Pair Programming in Classroom Projects

As mentioned earlier, Pair Programming (PP), one of the important 

practices of eXtreme Programming (XP), is a collaborative programming [10]. 
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Pair programming has been used in industry and promising results have been 

reported. Nosek (1998) [105] studied 15 professional programmers in both pair 

programming and individual programming situations and found that all pairs 

outperformed the individuals in terms of quality and time spent. William 

(2001)[169] did a survey of professional programmers and found that 100% 

were more confident in their solutions when using pair programming. However, 

recent studies demonstrate that pair programming should not be used for either 

very large systems [150] or trivial problems [10] [101]. 

Several researchers used pair programming in undergraduate computer 

science courses and found it to be beneficial to students. William et al.

(2000)[170] performed a case study in an introductory computer science course 

with 41 undergraduate students who formed two groups: one that worked in 

pairs and the other one that worked individually. The students were asked to 

complete four programming assignments. They found that paired students 

completed assignments faster and with higher quality. The defects of their 

programs were 15% lower and they also appeared to learn faster than the 

students who worked on their own [170].

Hedin et al. (2003) [73] used pair programming to teach a second year 

software engineering class that had 107 students and reported a very positive 

result  McDowell et al. (2002) [96] found that students who worked in pairs 

implemented better programs and performed significantly better in exams than 

those worked individually. They also noticed that fewer students in pair 

programming dropped out of the course than those working by themselves.
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Williams et al. (2003) [171] conducted a mass case study in introductory 

programming courses that involved over 1200 students. It was found that paired 

students were more likely to complete the introductory course with a grade C or 

better, and their exam and project scores were better than those who worked 

individually.

The learning process involved in pair programming has been recently 

closely studied.  Williams and Upchurch (2001) [169] conducted a case study in 

order to understand how teaching and learning are enhanced by pair 

programming. They found that the students communicated with each other more 

effectively, appeared to learn faster, and were happier. The positive effect of 

pair programming on knowledge sharing during program design was also 

noticed by others [27]. 

The benefits of pair rotation have also been observed [146] [27]. The 

researchers found that students can learn from several partners, while the 

teachers have to deal with dysfunctional pairs.

However some disadvantages were also reported. Nawrocki and 

Wokciechowski (2001) [102] claimed that pairs spend nearly twice as much total 

time than individual programmers. The case study conducted by Gallis et al. 

(2002) [61] has shown that pair programming is inefficient for trivial 

programming tasks. The undergraduate students only have basic programming 

knowledge and they can not conduct pair programming on complex projects. 

Schneider and Johnston (2003) [131] noticed that due to the differences 

of experience between the two programmers in a pair, the stronger one did most 
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of the job and the weaker one often failed to learn, something that often 

happens in undergraduate classes. Schneider and Johnston also observed that 

in order to fully understand the important elements in software development as 

well as the consequences of agile practices, students must reach certain level of 

maturity.  Otherwise, agile practices such as pair programming might be 

misused [61] [131].   

Pair programming was also used in graduate classes, although not as 

frequently. Muller and Tichy (2001) [101] performed a case study using pair 

programming with graduate students who were required to take a practical 

training course. Twelve participants completed three simple tasks and one 

project in pairs. They found it easy to adapt to the pair programming in graduate 

classes. However, some students commented that it was a waste of time to 

watch their partners dealing with trivial programming problems.

Stotts et al. (2003) [148] did a case study with graduate students and 

compared the effects of pair programming in a distributed environment and 

found such an approach both feasible and effective. However, pair programming 

has rarely been used in graduate software engineering course projects.

7.2 Case Study Design

In order to investigate the effects of pair programming in a graduate 

software engineering course and in software evolution, and the difference

between pair programming and traditional individual programming in that, we 
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designed a case study where the participants worked either in pairs or 

individually and made incremental changes to an existing large open source 

program. That allowed us to make a comparison between the pair programming 

and traditional individual programming. We also conducted a survey on pair 

programming [175].

In our design, we were led by our belief that the graduate students have 

sufficient required knowledge of programming for pair programming, and also 

have an experience in cooperation which lessens the possibility of failure. We 

wanted to see how well the graduate students could actually perform in graduate 

software engineering course projects when using pair programming technique 

and how effective it would be to integrate the software evolution in open source 

software project.

The experiment applies a single-factor design [29]. The controlled 

independent variable is whether the experimental subjects use pair 

programming or use traditional individual programming [62]. Each subject of 

both groups solves the same problems and works under the same or similar 

conditions. The dependent variables for each subject are 1) the total time taken 

for each change request 2) the lines of code for each change request written by 

programmers 3) the number of classes they made change necessary 4) the 

number of classes they made change unnecessary. 

The case study design is based on the null hypotheses later falsified by 

the case study: “Pair programming is not useful for graduate software 

engineering class” and “Pair programming cannot be conducted with software 
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evolution projects”. The rest of this section describes various facets of the case 

study design. 

7.2.1 Participants

Six graduate students from the Wayne Sate University Department of 

Computer Science participated in the study. It was conducted through their 

course project. The case study lasted for one entire semester. The students 

were experienced in programming in C, Java, or C++, but they had never before 

performed pair programming, nor did they have experience in software 

evolution. The programming experience of all the six students is shown in Table 

7.1. In the pair group, there are 3 Master students and one Ph.D. student. Two 

male students and two female students formed two pairs respectively.  Since all 

of them had similar experience in OO programming and had never used pair 

programming technique before, there is no obvious bias in such pairing.  Two 

master students were in the individual group, one male and one female. 

Table 7.1: Programmers’ experience

Pair 1 
(A)

Pair 1
(B)

Pair 2
(A)

Pair 2
 (B)

Single 
1

Single 
2

Years using Java language 3 1 2 5 3 2
Years using C++ language 5 4 1 2 2 2
Other languages known Matla

b
C, VB C Perl, 

Clips
 C C

Total lines of code having written 
in java

>1000 500 <1000 2000 -
3000

2000 >1000

lines of biggest programs having 
previously studied

>3,000 >1,000 5,000 >1,000 1000 1500
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7.2.2 Material

The material for this case study is an open source project called JAdvisor 

[144]. JAdvisor is a class scheduler, course planner, and course search program 

written in Java. JAdvisor allows college students to view their schedules 

graphically and to create an optimal schedule. We selected this open-source 

application since it has reasonably big size with 31 classes, and satisfies Beck’s 

criterion that the tasks for pair programming should take at least several hours 

[10].  JAdvisor application was also new to all the programmers.

The students were working on six distinct change requests that varied in 

difficulty. Here are the change requests:

Change request 1: Color coding schedule. JAdvisor allows the user to 

input block time to the schedule; however, there is no specific drop down menu 

to do so and each classification shows up with same color and is therefore, hard 

to recognize.  We are to add a classification drop down box to the block time 

menu.  It should display various classifications like study time, food break time, 

homework time, etc., with different color blocks on the schedule.  Via this way 

the user can easily identify their allocated times.

Change request 2: XML output. Current version of JAdvisor does not 

support XML output for class scheduling, but we need it to output the schedule of 

the user.  The XML structure must be clear and readable.  Once this structure is 

documented the user should be able to save their output with the XML format, 
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and also the program should be able to read the XML format files into both the 

planner and schedule tabs.

Change request 3: Planner wizard. JAdvisor has no planner wizard for the 

required courses needed for a degree. We are going to create a planner wizard 

that allows the user to enter all courses necessary for his or her degree. The 

information should be saved in XML format whenever the user chooses to do so. 

These courses should be shown in the planner tab on the right hand side.  If a 

course has been taken, the course name should appear in red color and the user 

should not be allowed to select it.

Change request 4: Planner duplication. The planner is supposed to allow 

the user to plan all four years of the curriculum, but it allows for duplicates.  

Since students usually do not repeat their courses, JAdvisor should ask the user 

to overwrite if he or she does add a duplicate course either in the same 

semester or in future semesters. 

Change request 5: Pop-up dialog. The planner does not allow the user to 

select a course and then to display its information. We are going to add a pop-up 

dialog window which allows the user to click on a course in the current term and 

then a pop-up dialog should be able to display the course information. 

Change request 6:  HTML input. The current version of JAdvisor allows 

the user to output HTML, but it cannot read HTML files.  The program should be 

able to read HTML files and fill in the scheduler as if they were saved.

7.2.3 Procedures
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Prior to the case study, all subjects were given lectures on basic concepts 

of pair programming and incremental change such as concept location, change 

propagation and impact analysis. They were taught how to do incremental 

change and how to conduct pair programming. They were also provided with 

JAdvisor website and the change requests. 

The author acted as a mentor who monitored the programming process 

for all the pairs. The programmers were required to document the time they 

used for their tasks. 

One pair and one individual programmer worked on change requests 1, 2 

and 3, and the other pair and the other individual programmer worked on 

change requests 4, 5 and 6. They worked on those change requests in 

sequence. 

After the case study was completed, programmer pairs and individual 

programmers were asked to write a report on the process with screen shots. 

Based on the observation, the program written by programmers, and the reports, 

we conduct analysis.

7.3 Case Study Result

In this section, we summarize the results of experiments and student 

survey on pair programming. 
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7.3.1 Case Study Results

All six participants have completed their work. In Table 7.2, we presented 

the time the participants spent on each change request. Please note that the 

times listed in Table 7.2 are the duration that the pairs and individuals spent on 

the tasks. Therefore, the “total time cost” for a pair is double the time indicated. 

In all cases, it is bigger than the total time cost spent by individuals who worked 

on the same tasks. On the other hand, programmer pairs worked on the tasks 

for a significantly shorter duration than individual programmers. This indicates 

the pairing can reduce the time of software evolution, which is consistent with 

the result for pair programming in software development reported by [34, 170]. 

However it may increase the cost of the development as the “total time 

investment” for two programmers is higher.

Table 7.2: Comparison of time (hours) used by pair and individual 
programmers

Subjects Tasks completed in 
order

Pairs Individuals 

Change 1 12 15
Change 2 9 12

Pair 1/ Individual 1

Change 3 9 15
Change 4 13 15
Change 5 11 15

Pair 2/ individual2 

Change 6 7 14

Change requests 1, 2 and 3 were done by one pair and change requests 

4, 5 and 6 were done by the second pair in sequence. From Table 7.2, we can 

see that the time spent by the pairs on the change requests became shorter as 
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the process moved along; however, this phenomenon is not shown by the work 

of the individuals. This indicates that the learning process is faster for the pairs 

than for the individuals. This result agrees with the results claimed by Williams et 

al. (2000) [170], who stated that pairing forces the two programmers to think 

aloud, making their comprehension strategy explicit, and thus, enhanced the 

learning process. 

Table 7.3: Change request results for pairs

Change
requests

Pairs

Lines of code Numbers of classes 
changed 

Numbers of classes 
changed unnecessary

1 110 3 1
2 87 3 0
3 56 1 0
4 64 4 0
5 82 3 0
6 67 3 0
Total 466 17 1

Table 7.4: Change request results for individuals

Change
requests

Individuals

Lines of code Numbers of classes
changed necessary

Numbers of classes 
changed unnecessary

1 125 3 0
2 104 3 0
3 86 1 2
4 102 3 1
5 78 3 0
6 75 2 0
Total 570 15 3

Tables 7.3 and 7.4 show the numbers of lines of code added for each 

change request, the numbers of classes which have been correctly changed, 
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and the numbers of classes which should not be changed but were modified by 

the programmer pairs or individuals. For six change requests, pair programmers 

added a total of 466 lines of code, but there are 570 lines of code written by 

individual programmers. The pair programmers also did most of the job correctly 

since they completed more required change propagations than individual 

programmers. The individual programmers failed to find 3 change propagations, 

and did unnecessary change in 3 classes.  But the pairs only failed to find one

change propagation out of total eighteen. Also the programs written by pairs 

have more meaningful variable names. This proves that with the help from the 

partner, programmer pairs are able to write higher quality code, supporting the 

same finding by [170].

Table 7.5: Result of quantitative questions from the survey for pairs

Questions Lowest
(0.0)

Highest
(5.0)

Answer 
(average)

How effective do you think pair 
programming was for the project?

Not effective Very effective 4.00

Did you and your partner contribute 
equally to the project?

Very unequal Equal 3.20

What is your rating of your 
performance?

Did very 
little

Did most of 
work

3.8

What is your rating of your 
partner’s performance?

Did very 
little

Did most of 
work

3..9

Do you think you learned more or 
less than you would have if you had 
worked on your own?

Much less Much more 3..8

How do you think the time that you 
personally spent on this project 
compares to the time it would have 
taken you to do it on your own?

Pairs much 
slower

Pairs much 
faster

4.0

Would you like to use pair 
programming during your future 
graduate course project?

Not at all Very like 4.6
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7.3.2 Survey Results

A survey on pair programming was conducted with the survey questions 

listed in Table 7.5 through Table 7.7.

In general, students thought that pair programming is an effective way to 

complete the course project. All students were satisfied with their own 

performance as well as that of their partners; however, they thought the 

contributions from the two people in the pair were different, which is consistent 

with the two roles in the pair: One is the driver who controls the keyboard and 

the other is an observer performing code review in helping the driver to make 

decisions [10]. It seems that a role rotation is needed in order to further promote 

learning between the two programmers in the pair as mentioned in [146]. The 

students also believed that pair programming can actually save their time in 

completing the projects. This corresponds to the shorter project durations that 

were indicated in Table 7.2. The two pairs reported that they enjoyed the pair 

programming technique more than them programming alone and are willing to 

apply it in their future projects. It seems that the programmer pairs had higher 

motivation to finish the tasks than did individual programmers, also contributing 

to the time difference on the tasks by the pairs.

The two individuals who participated in the case study were also 

conducted a survey via email. The questions and results are shown in Table 7.7. 

It seems that the two individuals expected positive effects in applying pair 
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programming in the course projects and they were also interested in using it in 

the near future.

Table 7.6: Answers of qualitative questions from the survey for pairs

Questions Answers
Do you feel like you have 
learned anything just by 
reading your partner’s 
code?

 Yes, I think so
 Yes, I agree
 No, I do not feel that way
 No, I did not learn more

What was the biggest 
problem you have had to 
overcome as a paired 
programmer?

 No problem
 I do not think there is a problem
 The pair should know how to deal with different 
options
 Partners should have similar knowledge

What do you think is the 
biggest concern in pair 
programming?

 Matching of the two programmers
 Having agreement
 Not being ready for big problem
 Time conflict

What are the advantages 
of pair programming?

 Pair works faster
 Pair explores more design and implementation options
 Pair has more confidence
 Pair can share ideas

Based on the case study and survey results, it seems that pair 

programming and the large application like JAdvisor can work as graduate 

software engineering projects since the paired programmers produced higher 

quality results within shorter time, compared with those working alone. The 

programming ability of the pairs was better than that of individuals based on 

Tables 7.2, 7.3, and 7.4. 

Using pair programming, learning has been enhanced greatly, since the 

knowledge is constantly exchanged between partners, including those concepts 

learned in the classroom, tool usage tips, programming language, design skill, 
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and debugging techniques. Pair programming affects learning and motivation, 

facts that have been demonstrated by the result of the survey.

Table 7.7: Answers of qualitative questions from the survey from individuals

Questions Answers
Do you think it would be more efficient if 
you would have worked with
a partner?

 Yes, I think it would
 Yes, I agree, but not sure

Do you think you learn more if you would 
have worked with a partner than when 
you worked alone?

 Yes
 Yes

How do you think the time that you would 
spend with a partner compared to the 
time you spent on your own?

 It depends on the partner. If the team was 
on the same level, it would be more efficient 
and require lesser time. But if the partner was 
learning then I don't see any advantage.
 Possibly we would use less time by 
working as pair

How do you think the pair programming 
impacts a quality of the program?

 Better than with a single person project
 It should have higher quality

If you are allowed to choose in future 
course projects, would you prefer to work 
with 
a partner or work alone? 

 With a partner
 I love to pair with a friend to see the results

Nevertheless, using the pair programming concept in graduate class 

projects certainly has some obstacles. The first one is how to pair students. 

Letting students themselves decide who to pair with is often a good option that 

can minimize incompatibility. The second issue is the types of programming 

problems for the projects. Theoretically, any program problem with medium size 

is suitable for pair programming. However, some problems may motivate 

students to learn more than others. The third obstacle is the scheduling 

problem.  If the two students have scheduling problems, they cannot work on the 

project together.
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7.4 Threats to the Case Study

Several issues affected our results and limit our observations of the case 

study.  These stem from the nature of any case study, and from our general 

approach.

Although the Java program JAdvisor is an open source project, it is not 

representative of programs as a whole.  It is not a very large program and in no 

way is able to represent all OO programs. Much larger size of programs might 

have slightly different results.

The change requests given were open to the interpretation of the 

participants.  While all questions pertaining to the requirements were answered,

several students felt that some of them were not required or were loosely 

coupled to the more important change.  One example is the implementation of 

the link between the scheduler and planner components without a drop down 

box to determine which semester to add the course to.  This could also be the 

result of a poor assumption.  The JAdvisor program on its first execution asks for 

the current semester, which validates the assumption.  However, in future 

executions, the user can load saved data, which will change the current 

semester.  Therefore the assumption does not hold for consecutive executions of 

the system.  

7.5 Summary of the Case Study
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Pair programming increasingly attracts attention not only in the industry, 

but also of academia. Pair programming has been reported to have benefits in 

software development and in undergraduate classroom. 

Because of their maturity, a good command of programming knowledge, 

experience in cooperation, and the moderate size of graduate software 

engineering class projects, graduate students are the ideal candidates to use 

pair programming in their classroom projects as well.

We performed a case study on pair programming in software evolution at 

graduate software engineering class with six graduate students, who worked as 

either pairs or individuals. All the subjects worked on change requests on open 

source software: JAdvisor. 

The case study showed that programmer pairs consume shorter time, but 

at an increased cost because of the extra labor involved. Programmer pairs 

completed the tasks with higher quality work than those done by individuals 

since they only missed one change propagation out of eighteen in total, but 

individual programmers missed three. They have also written higher quality 

code, such as with less lines of code and more meaningful variable names. 

According to the survey, all students are satisfied with the performance by 

themselves and their partners and they are willing to use pair programming in 

the future.  Based on the case study and survey results, it seems that it is a 

good idea to develop graduate software engineering course project with pair 

programming and pair programming can be applied to software evolution tasks 
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which falsifies the hypothesis. Using pair programming technique to organize the 

projects not only forces students to learn, but also gives them some fun. 
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CHAPTER 8

EVALUATION OF DIALOG-BASED PROTOCOL, SOFTWARE SCREEN-
CAPTURING AND SELF-DIRECTED LEARNING THEORY

Since we used a novel empirical technique of dialog based protocol, 

software screen capturing and self-direct learning theory to conduct our empirical 

study, in this section we summarize our experience with that technique and 

evaluate our novel empirical approach. 

8.1 Dialog-Based Protocol

According to our observation, when two programmers in a pair were well 

matched, they worked efficiently and conducted a revealing dialog. However in 

our case study on incremental software development, we ran into some 

difficulties which might indicate the issues and limitations of the dialog-based 

protocol. 

One pair did not use the dialog to communicate, and only one 

programmer spoke all the time. That programmer wrote the program alone and 

explained his thoughts to the other member. His partner simply said “yes” or 

“right” during the process, and it looked as if this pair had simply applied the 

think-aloud protocol. We considered these data to be invalid and did not include 

them in the final analysis of that case study.
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One pair did not follow the directions to implement an object-oriented 

program and only created one class for the whole program. Again we considered 

the resulting data to be invalid. 

One pair had experienced great difficulty working together although they 

did manage to complete the task. There were a lot of arguments and a non-task-

related discussion. Those arguments affected their motivation and impacted the 

results. We still considered the data to be valid after we removed the irrelevant 

parts of the dialog. 

We often observed cases where one subject did not understand the 

partner’s idea and the partner tried to illustrate and explain it to the partner in 

more detail. Whenever an ambiguity or misunderstanding arose, the other 

partner would force the subject to correct it or make it clear. Based on this 

observation we are convinced that the data collected in dialog-based protocol 

are more complete and more correct than in think-aloud protocol, which 

confirmed our earlier anticipation. 

Since the mentor was simply an observer, the communication between 

the mentor and the subjects had been greatly reduced. Even when subjects had 

a technical question, they did not have to ask the mentor for help since their 

partner was often able to solve the problem. During the case study, the mentor 

was only asked questions at the beginning of the process when several pairs 

had problems with the use of the compiler. There was no communication at all 

between the mentor and three pairs. Therefore, the placebo effect was greatly 

reduced. 
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The presence of the mentor in the dialog-based protocol was not 

necessary, particularly when subjects fully understand program requirements 

and are familiar with the tools. We observed that programmer pairs talked quite 

naturally and frankly and some of them often joked, which indicated that they 

totally forgot that they were conducting the experiment. Therefore, the 

experiment was conducted in more natural environment and the Hawthorne 

effect was minimized.

In general, our observations during the case study directly supported the 

anticipated comparisons between think-aloud and dialog-based protocols shown 

in Table 2.1. We concluded that dialog-based protocol is an effective method for 

collecting information on the programmers’ cognitive activities during software 

engineering processes, although there are still some open issues, such as how 

to form the pairs. 

8.2 Software Screen-Capturing

In our case study on incremental software development and software 

evolution, we used videotaping for the first two pairs and then switched to 

software screen-capturing for the rest. Videotaping provided more data, but 

these additional data did not play any significant role in our case study. 

Recording quality with a video camera turned out to be lower than using a 

software screen-capturing. The camera had to be located a certain distance from 

the subjects in order to capture the whole computer screen, but that increased 
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the external noise in the recordings. Some screen data were missing since the 

camera was located behind the subjects and when subjects moved, their bodies 

hid parts of the screen. There were no such problems with software screen-

capturing.

We also found that screen-capturing reduced the Hawthorne effect.  One 

pair was clearly camera shy since they occasionally asked if the taping has been 

stopped, indicating a possibility of the Hawthorne effect. We found no evidence 

of similar awareness during the software screen-capturing.  

Transcription of the videotape took much more time than using software 

screen-capturing. There were several procedures and particular software we had 

to use in order to transcribe the digital tapes into media files. Playing back the 

tapes was more time-consuming and complex than playing back media files.

Videotaping needed a detailed time schedule in which two programmers 

in the pair, the mentor, and the video-camera all had to be available at the same 

time. 

The media files captured by software did not always display continuous 

scenes on the screen due to the delays of capturing. However, no significant 

data was lost in this way, and we did not have any difficulties transcribing media 

files into dialogs. 

8.3 Code Scheme: Self-Directed Learning Theory
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Through the case study, we found that the self-directed learning model 

provides a clear and easy-to-use coding scheme in studying the cognitive 

activities during software engineering processes. It can be used to classify the 

cognitive activities and learning levels used by programmers during incremental 

software development and program debugging, and thus to distinguish experts 

and novices.

 Similar to other coding schemes, the self-directed learning theory leaves 

room for disagreements.  A coding scheme uses a limited selection of verbs for 

the four cognitive activities and six Bloom learning levels (Tables 4.1 and 2.2). 

The verbs for the Bloom levels have been developed and validated through 

many years of use, but still some verbs appear at more than one Bloom levels, 

creating an ambiguous classification process. The verbs for cognitive activities in 

Table 4.1 were used in our case studied for the first time and might not be 

complete. About 10-15% of episodes in recorded dialogs did not contain those 

verbs or even their synonyms. Therefore, not only the verbs in the episode, but 

also the actual contents of the episode were considered during the classification.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Although we have had a conclusion for each chapter, this part will serve 

as an overall conclusion of the thesis that corresponds to the general objectives. 

We describe the conclusions under the categories of dialog-based protocol, self-

directed learning theory, and cognitive process during incremental software 

development, cognitive process during program debugging, and pair 

programming in software evolution project. Each of them will be presented

respectively in sections 9.1, 9.2, 9.3, 9.4 and 9.5. After that, in Section 9.6, we 

will elaborate the future work that can extend the subjects of this thesis.

9.1 Dialog-Based Protocol

Based on the idea of pair programming, we proposed a dialog-based 

protocol, which is an alternative to common think-aloud protocol. Through the 

case study, we found that we can collect more complete and accurate data 

through dialog-based protocol. Dialog-based protocol can also reduce the 

Hawthorne and placebo effect because it creates a more nature dialog 

environment and reduces the communication between the mentor and subjects. 

Therefore, it is considered as an effective method for collecting information on

the programmers’ cognitive activities during software engineering processes.

9.2 Self-Directed Learning Theory
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Based on the constructivist learning theory, we classified the cognitive 

process into four cognitive activities: absorption, reorganization, denial and 

expulsion. We also used the Bloom’s taxonomy of cognitive domain to classify 

the learning levels. The result of the case study demonstrates that the self-

directed learning model provides a clear and easy-to-use coding scheme in the 

study of cognitive activities during software engineering processes. 

9.3 Cognitive Process during Incremental Software Development

In order to study how a programmer learns and what is the cognitive 

process during incremental software development, we applied a novel empirical 

method that consists of dialog-based protocol, software screen-capturing, and a 

coding scheme based on self-directed learning. 

From the case study, we found that all intermediate level programmers 

followed a similar cognitive process with a similar distribution of the cognitive 

activities and Bloom levels. Using incremental software development with the 

test-first approach, absorption is the dominant activity behind the process.  

Reorganization often occurs, but denial and expulsion occasionally appear.  The 

four cognitive activities appear at four of the six of Bloom’s levels.

Compared to intermediate programmers, experts discuss more domain 

concepts at a greater length of time before they start writing their code. Experts 

concentrate mostly on one concept at one time, while intermediate programmers 
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often discuss several concepts simultaneously.  Experts are willing to reconsider 

and correct obsolete design decisions, while intermediate programmers retain all 

design decisions.  Experts have more absorption activities at higher Bloom 

levels, such as analysis and synthesis, whereas intermediate programmers had 

more absorption activities at lower Bloom levels, such as comprehension and 

application. Experts spend more time analyzing the knowledge and generating 

test cases, intermediate programmers spend more time learning the knowledge.

9.4 Cognitive Process during Program Debugging

In this case study, we studied the cognitive aspect of program debugging 

using self-directed learning theory. The activities in program debugging were 

classified according to the four cognitive activities at six levels in Bloom’s 

hierarchy. The case study showed that for debugging, programmers have to 

utilize all six levels of Bloom’s hierarchy in order to be able to make the 

necessary updates. This indicates the program debugging is a complex and 

difficult task.

The case study result also indicated that during program debugging, 

absorption is the driving activity that occurs most frequently and at all six learning 

levels. Reorganization also appears. Expulsion only happens on knowledge 

level. No denial activity is found in this case study. All six Bloom’s levels are

identified in the case study. Activities at comprehension level take up to 28.56%, 

the biggest portion of total activities.
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We speculate that novices may spend more time in accumulating 

knowledge and in comprehending. In other words, novices are more likely to 

spend more time on the two lowest levels of the hierarchy. By contrast, experts, 

who are already confident with this knowledge and in comprehension,

concentrate on application, analysis, synthesis and evaluation. We believe that 

this is what forms the large gap in the performance of novices and experts. 

9.5 Pair Programming in Software Evolution Course Projects

Pair programming has been used in undergraduate classes in order to 

develop student skills and to enhance student learning. Experiments with such 

an approach have demonstrated positive effects. This case study investigates 

the effects of pair programming in graduate software engineering classes with 

six students who were assigned to work on incremental changes on an open 

source application either as pairs or as individuals. During the experiment, we 

found that paired students completed their change request tasks faster and with 

higher quality than individuals.  They also wrote less lines of code and used 

more meaningful variable names.  The result of the case study shows that pair 

programming could be an effective and useful approach for graduate software 

engineering classes. 

Because of maturity, a good command of programming knowledge, 

experience in cooperation, and the moderate size of graduate software 
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engineering class projects, graduate students are ideal candidates to use pair 

programming in their classroom projects.

Graduate software engineering class projects are normally of moderate 

size. Graduate students are both mature and experienced in cooperation and 

most of them have a good command of programming knowledge.  All the above 

factors make pair programming ideal for graduate classroom projects.

9.6 Potential Future Work

In the future, we will be using our empirical approach to study other 

software engineering processes where dialog-based protocol (i. e., pair 

programming) is applicable. In particular, we want to study more detailed 

activities that constitute software evolution, such as change request analysis, 

concept location, impact analysis, change propagation, regression testing, and 

others.  We are hoping to be able to distinguish those different software 

engineering activities. 

Based on the self-directed learning model, we plan to build a 

documentation tool which can be used to capture the domain knowledge and 

programming knowledge during incremental software development. The 

knowledge which is not preserved in the code, but appears in the development 

process, might be useful for maintenance and debugging as well. Therefore, 

documenting the knowledge during software development is necessary.
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We also plan to conduct research on software evolution in large programs 

in order to understand the impact of the program size on the cognitive activities 

of the programmers.
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APPENDIX A

PILOT STUDY ON INCREMENTAL SOFTWARE DEVELOPMENT

1. Introduction

At the beginning of this research, we conducted a pilot study on 

incremental software development [119] [120]. For simplicity, we decided to 

concentrate on the eXtreme Programming process [10] where pair programming 

is one of the recommended practices. We use one XP programming example, 

which was done by two experts who have been working in industry for more than 

25 years [93]. 

Pair programming offers a unique opportunity to study the parallel 

construction of both the program and the programmer knowledge. In pair 

programming, the programmers communicate with each other about the evolving 

program. By recording and analyzing their dialog, we study how both the 

knowledge and program grow. 

The programmers take change requests one at a time and make 

corresponding program changes. The changes that the programmers perform on 

the programs fall into three categories: additions of the new functionality called 

incremental changes, deletions of functionality called retractions, and 

restructurings of the program called refactorings. Of them, the incremental 

change is done in direct response to a change request, while retraction and 
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refactoring are done in response to the whole history of accumulated incremental 

changes and resulting program structure. 

We [119] demonstrated that the knowledge growing process in 

incremental software development is analogous to constructivist learning (Table 

A.1). A programmer constructs the program based on the sequence of change 

requests, such as additions of the new functionality (incremental changes), 

deletions of functionality (retractions), and restructuring of the program 

(refactoring). The corresponding cognitive activities are absorption, expulsion, 

and reorganization. Sometimes, a programmer might find a change request that 

is impossible to accomplish, that change request then has to be rejected. The 

cognitive activity for that is denial. We [119] also found that absorption is the 

dominant activity behind the process during incremental software development. 

Reorganization often occurs, but denial and expulsion only appear occasionally.

Table A.1: Analogy of incremental software development and constructivism

Incremental development Constructivist learning
Programming activity Cognitive activities
Incremental change Absorption
Rejection of change request Denial
Refactoring Reorganization
Retraction Expulsion

2. Pilot Study Result

The program developed during this case study records bowling scores [93]. 

The programming pair started the process with the preliminary knowledge of the 

domain (bowling rules). This preliminary knowledge is represented in Figure. A.1, 

where concepts are represented by rectangles and the arrows represent the 
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dependencies. The dependencies stand for the order in which the concepts have 

to be explained to one not familiar with the domain. A concept can be explained 

only if all previous concepts it is dependent on have been explained and 

understood. Gruber (1993) [71] discussed issues of defining a common theoretical 

framework and vocabulary so that interested agents can make and share a 

particular ontological commitment, such as classes, functions and other objects.

For simplicity, we use UML notation to represent design decisions in our work.

pin

frame

ball

sparestrike

throw

scorer current score

game

score 
card

team

Figure.A.1: Domain concepts in the pilot study

This original domain knowledge serves also as a backlog of things to do, 

as the programmers intend to implement a program with functionality that fully 

covers this domain knowledge. Preliminary programming knowledge includes 

knowledge of the programming language, algorithms, eXtreme Programming 

practices, and so forth. 
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Equipped with this knowledge, the programmers implemented a sequence 

of the program versions and recorded their dialog. The UML class diagram [57]

of the first version is in Figure A.2. The design decisions that led to this diagram 

were extracted from the recorded dialog and appear in Figure A.3. The 

rectangles represent design decisions while arrows represent the order in which 

the design decisions were made. Dark rectangles represent domain concepts 

that serve as the basis of some of the design decisions. 

TestCase

TestThrow

testThrow()

TestFrame

TestFrame()

testScoreNoThrow()

testAddOneThrow()

Throw Score

Frame

getScore()

add()

Figure A.2: UML class diagram for the first version
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Throw

TestThrow

throw

Score

TestFrame

getScore

testScoreNoThrow

add

frame

score

testScoreOneThrow

Frame

Figure A.3: Design decisions for the first version

Please note that the order of the design decisions does not correspond to 

the order of the dependencies in the UML diagram. If the two orders were 

identical, that would mean that all design decisions were done in bottom-up 

order. The development continued through several steps; see the progress of 

the learning in Figure A.4, Figure A.5, and Figure A.7. The resulting UML class 

diagram of the program is in Figure A.6.
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Throw

TestThrow

throw

Frame

Score

TestFrame

getScore

testScoreNoThrow

testScoreOneThrow

add

frame

score
Game

game

TestGame

scoreadd

itsScore

testFourThrowsNoMark

ScoreForFrame

itsCurrentThrows

testSimpleSpare setUp testSimpleFrameAfterSparegetCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

Pins pins

spareSpare

strike

Strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

itsThrows
ball

Figure A.4: Design decisions in the middle of development

We divided this dialog into 84 small episodes. Two independent observers 

classified each episode as one of the four cognitive activities and one of the six 

levels of Bloom’s taxonomy, using the verbs in the dialog as the clue, see Tables 

2.2 and 4.1.  There were disagreements in approximately 10% of the episodes. 

There was also an observer bias that led one observer to score higher on 

Bloom’s scale than the other, with the average score being 0.5 higher. While 
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acknowledging these differences, we found that, in general, the classification 

was acceptable and reliable.  

testScoreOneThrow

Game

game

TestGame

scoreadd

itsScore

testFourThrowsNoMark

ScoreForFrame

itsCurrentThrows

testSimpleSpare setUp testSimpleFrameAfterSparegetCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

Pins pins

spareSpare

strike

Strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

itsThrows
ball

Figure A.5: Design decisions after class Frame was abandoned
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TestGame

g : Game

TestGame()
testTwoThrowsNoMark()
testFourThrowsNoMark()
testSimpleSpare()
setUp()
testSimpleFrameAfterSpare()
testSimpleSt rike()
testP erfectGame()
testEndOfArray()
testSampleGame()
testHeartBreak()
testTenthFrameSpare()

Scorer

bal l :  int
i tsThrows : []int
i tsCurrentThrow : int

addThrow()
scoreForFrame()
strike()
spare()
nextTwoBalls()
nextBall ()
twoBallsInFrame()

Game

it sCurrentFrame : int
fi rstThrowInFrame :  boolean
it sScorer :  Scorer

score()
add()
adjustCurrentFrame()
handleSecondThrow()
advanceFrame()
adjustFrameForSt rike()

Figure A.6: UML class diagram for the final program

3. Discussion of the Result of the Case Study

In the case study, we observed that the knowledge required by even a 

small program is quite extensive, as demonstrated in Fig. A.4. It should be 

remembered that these figures are only the “tip of the iceberg”, as there is a 
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large preliminary knowledge of the domain and programming that these figures 

do not capture. Yet all that knowledge is necessary to evolve the program.

testScoreOneThrow

Game

game

TestGame

scoreadd

itsScore

testFourThrowsNoMark

scoreForFrame

itsCurrentThrows

testSimpleSpare setUp testSimpleFrameAfterSparegetCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

spareSpare

strike

Strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

itsThrows
ball

advancedFrame adjustCurrentFrame

nextBall

nextTwoBall twoBallIsInFramescorerScorer

addThrow

Figure A.7: Design decisions at the end of development

During the incremental program development, the most common cognitive 

activity was absorption. While absorption was the driving force of the learning, 

there was one large episode of knowledge expulsion in the last part of the dialog. 

Class “Frame” of Figure A.4 and six related design decisions out of the total of 



www.manaraa.com

130

39 were retracted, resulting in the knowledge change. This episode illustrates the 

non-monotonic nature of self-directed learning. The changing number of 

concepts and their dependencies is presented in Figure. 5.2.

There were also episodes of reorganization of the knowledge. The 

rejection of concepts Score Card and Team in the first part of the dialog are 

examples of denial.

We observed that the absorption occurred most often at the beginning 

and the middle of the dialog, while the expulsion happened most often in the last 

part. Reorganization appeared mostly in the middle and last parts and denial 

appeared only in the first and middle parts of the dialog. The episodes belong to 

all levels of Bloom’s hierarchy except the lowest and highest one. 

Table A.2. shows that the episodes which were classified according to the 

self-directed learning theory. Each episode shows either creating new concepts 

or revisiting and updating existing ones. Almost all the domain concepts were 

revisited and updated. The domain concept “Frame” was updated as many as 9 

times, with each update resulting in more accurate knowledge.  Many design 

decisions were also updated, but less frequently than domain concepts. 

As a result of the case study, we conclude that the self-directed learning 

model explains the learning that takes place in incremental software 

development.
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Table A.2: The classification of the cognitive activities and 
Bloom levels in the case study on incremental software 

development

(A: absorption; d: denial; r: reorganization; e: expulsion; 1-6 refers to the 
six Bloom’s levels starting from knowledge)

No Programmers’ action Bloom’s 
level

activity

1 M: What I'd like to do is write an application that keeps track of a bowling 
league. It needs to record all the games, determine the ranks of the teams, 
determine the winners and losers of each weekly match, and accurately 
score each game. 
K: You rattled off several user stories, which one would you like to start 
with.

2 a

2 M: Let's begin with scoring a single game
K: What does that mean? What are the inputs and outputs for this story?
M: It seems to me that the inputs are simply a sequence of throws. A throw 
is just an integer that tells how many pins were knocked down by the ball. 
The output is the data on a standard bowling score card, a set of frames 
populated with the pins knocked down by each throw, and marks denoting 
spares and strikes. The most important number in each frame is the current 
game score

3 a

3 K: Let me sketch out a little picture of this score card to give us a visual 
reminder of the requirements.
K: but it will serve as a decent acceptance test
M: We'll need others, but let's deal with that later. How should we start? 
Shall we come up with a design for the system? 
K: but I wouldn't mind a UML diagram showing the problem domain 
concepts that we might see from the score card. That will give us some 
candidate objects that we can explore further in code.”

3 a

4 M: Clearly a game object consists of a sequence of ten frames. Each frame 
object contains one, two, or three throws.
K: Great minds. That was exactly what I was thinking. Let me quickly draw 
that, but if you tell Kent, I'll deny it.

2 a

5 K: Shall we start at the end of the dependency chain and work backwards? 
That will make testing easier
M: Sure, why not. Let's create a test case for the Throw class.
K: Do you have a clue what the behavior of a Throw object should be? 
M: It holds the number of pins knocked down by the player 

5 a

6 K: Maybe we should come back to it and focus on an object that actually has 
behavior, instead of one that's just a data store.
M: You mean the Throw class might not really exist?" 
K: Well, if it doesn't have any behavior, how important can it be? I don't 
know if it exists or not yet. I'd just feel more productive if we were working 
on an object that had more than setters and getters for methods.

4 e
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7 M: let's move up the dependency chain to Frame and see if there are any 
test cases we can write that will force us to finish Throw

4 a

8 K: Okay, new file, new test case
M: Now, can you think of any interesting test cases for Frame? A frame 
might provide its score, the number of pins on each throw, whether there 
was a strike or a spare... 
M: the test case passes

5 a

9 M: But Score is a really stupid function. It will fail if we add a throw to the 
frame.

4 a

10 M: So let's write the test case that adds some throws and then checks the 
score

5 a

11 M: That doesn't compile. There's no add method in Frame. 2 a

12 K: I'll bet if you define the method it will compile. 
M: This doesn't compile because we haven't written the Throw class

4 a

13 K: The test is passing an integer, and the method expects a Throw object. 2 a

14 K: Before we go down the Throw path again, can you describe its behavior? 
M: didn't even notice that I had written f.add(5). I should have written 
f.add(new Throw(5)), but that's ugly as hell. What I really want to write is 
f.add(5).
K: Can you describe any behavior of a Throw object — binary response.
M: I don't know if there is any behavior in Throw; I'm beginning to think a 
Throw is just an int. However, we don't need to consider that yet, since we 
can write Frame.add to take an int

2 e

15 K: Then I think we should do that for no other reason than it's simple. 
M: OK, this compiles and fails the test. Now, let's make the test pass. 
M: This compiles and passes the tests. But it's clearly simplistic. What's the 
next test case. 

3 a

16 M: Frame.add is a fragile function. What if you call it with an 11? 
K: It can throw an exception if that happens. But who is calling it? Is this 
going to be an application framework that thousands of people will use and 
we have to protect against such things, or is this going to be used by you and 
only you? If the latter, just don't call it with an 11

4 a

17 M: the tests in the rest of the system will catch an invalid argument. If we 
run into trouble, we can put the check in later. So, the add function doesn't 
currently handle strikes or spares. 

5 a

18 M: Let's write a test case that expresses that. 
K: if we call add(10) to represent a strike, what should getScore return? I 
don't know how to write the assertion, so maybe we're asking the wrong 
question. Or we're asking the right question to the wrong object. 

5 a

19 M: When you call add(10), or add(3) followed by add(7), then calling 
getScore on the Frame is meaningless. The frame would have to look ahead 
at later frames to calculate its score. If those later frames don't exist, then it 
would have to return something ugly like -1. I don't want to return -1

4 a

20 K: You've introduced the idea of frames knowing about other frames. Who 
is holding these different frame objects? So Game depends on Frame, and 
Frame in turn depends on Game

2 a
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21 M: Frames don't have to depend upon Game; they could be arranged in a 
linked list. Each frame could hold pointers to its next and previous frames. 
To get the score from a frame, the frame would look backwards to get the 
score of the previous frame and look forwards for any spare or strike balls it 
needs.

2 d

22 K: I'm feeling kind of dumb because I can't visualize this. Show me some 
code
M: So, we need a test case first
K: Game or another test for Frame?
M: I think we need one for Game, since it's Game that will build the frames 
and hook them up to each other." 
K: Do you want to stop what we're doing on Frame and do a mental long 
jump to Game, or do you just want to have a MockGame object that does 
just what we need to get Frame working?
M: let's stop working on Frame and start working on Game. 

2 a

23 M: The test cases in Game should prove that we need the linked list of 
Frames

5 a

24 K: but I'm still looking for proof for this list of Frames. 
M: Let's keep following these test cases and see where they lead. 
M: OK, this compiles and fails the test. Now let's make it pass. 
M: This passes. Good

5 a

25 K: I'm still looking for this great proof of the need for a linked list of frame 
objects. That's what led us to Game in the first place."

3 a

26 M: I fully expect that once we start injecting spare and strike test cases, we'll 
have to build frames and tie them together in a linked list. But I don't want 
to build that until the code forces us to.

4 a

27 K: Let's keep going in small steps on Game. What about another test that 
tests two throws but with no spare?
M: Yep, that one passes

5 a

28 M: Now let's try four balls, with no marks. That will pass too. 3 a

29 K: I didn't expect this. We can keep adding throws, and we don't ever even 
need a Frame. But we haven't done a spare or a strike yet. Maybe that's 
when we'll have to make one
M: That's what I'm counting on

4 d

30 K: I forgot that we have to be able to show the score in each frame. 
M: First let's make this test case fail by adding the scoreForFrame method 
to Game. 
M: this compiles and fails. Now, how do we make it pass?

5 a

31 K: We can start making frame objects. 
M: We could just create an array of integers in Game. Each call to add
would append a new integer onto the array. Each call to scoreForFrame
will just work forward through the array and calculate the score. 
M: that works

5 a

32 K: Why the magic number 21
M: That's the maximum possible number of throws in a game
K: "scoreForFrame needs to be refactored to be more communicative. 

4 r

33 K: But before we consider refactoring, let me ask another question: Is Game
the best place for this method? In my mind, Game is violating Bertrand 

4 a
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Meyer's SRP (Single Responsibility Principle). It is accepting throws and it 
knows how to score for each frame. What would you think about a Scorer
object?"

34 M: but there are side-effects in the score+= expression. They don't matter 
here because it doesn't matter which order the two addend expressions are 
evaluated in.
K: I suppose we could do an experiment to verify that there aren't any side-
effects, but that function isn't going to work with spares and strikes. Should 
we keep trying to make it more readable or should we push further on its 
functionality?"

5 d

35 M: The experiment would only have meaning on certain compilers. Other 
compilers might use different evaluation orders. Let's get rid of the order 
dependency and then push on with more test cases.

4 r

36 M: next test case. Let's try a spare
M: Let's refactor the test and put the creation of the game in a setUp
function.

4 r

37 M: That's better now. let's write the spare test case. 
M: but I think the increment of ball in the frameScore==10 case shouldn't 
be there. Here's a test case that proves my point

5 a

38 M: See, that fails. Now if we just take out that pesky extra increment. it still 
fails.... Could it be that the score method is wrong?

4 d

39 M: I'll test that by changing the test case to use scoreForFrame(2) 2 a

40 M: That passes. The score method must be messed up. 2 a

41 M: that's wrong. The score method is just returning the sum of the pins, not 
the proper score. What we need score to do is call scoreForFrame with the 
current frame

4 a

42 K: We don't know what the current frame is. Let's add that message to each 
of our current tests, one at a time

4 a

43 M: OK, that works. But it's stupid. Let's do the next test case 2 a

44 M: let's try the next. This one fails. Now let's make it pass 2 a

45 K: I think the algorithm is trivial. Just divide the number of throws by two, 
since there are two throws per frame. Unless we have a strike ... but we don't 
have strikes yet, so let's ignore them here too. 
K: What if we don't calculate it each time? What if we adjust a 
currentFrame member variable after each throw? 
M: OK, this works

4 a

46 M: But it also implies that the current frame is the frame of the last ball 
thrown, not the frame that the next ball will be thrown into

2 d

47 K: But before we go screwing around with it some more, let's pull that code 
out of add and put it in a private member function called 
adjustCurrentFrame or something

5 r

48 M: Now let's change the variable and function names to be more clear. What 
should we call itsCurrentFrame?

4 r

49 K: I kind of like that name. I don't think we're incrementing it in the right 
place though. The current frame, to me, is the frame number that I'm 

4 a
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throwing in. So it should get incremented right after the last throw in a 
frame.

50 M: Let's change the test cases to reflect that; then we'll fix 
adjustCurrentFrame.
M: OK, that's working.

3 r

51 M: Now let's test getCurrentFrame in the two spare cases. This works. 3 a

52 M: Now, back to the original problem. We need score to work. We can now 
write score to call scoreForFrame(getCurrentFrame()-1
M: This fails the TestOneThrow test case.

3 a

53 M: Let's look at it. With only one throw, the first frame is incomplete. The 
score method is calling scoreForFrame(0).
K: Who are we writing this program for, and who is going to be calling 
score? Is it reasonable to assume that it won't get called on an incomplete 
frame? 
M: To get around this, we have taken the score out of the testOneThrow
test case. Is that what we want to do

4 r

54 K: We could even eliminate the entire testOneThrow test case. It was used 
to ramp us up to the test cases of interest. Does it really serve a useful 
purpose now? We still have coverage in all of the other test cases

3 e

55 M: Now, we'd better work on the strike test case. After all, we want to see 
all those Frame objects built into a linked list, don't we? 
M: this compiles and fails as predicted.

4 a

56 K: Now we need to make it pass. OK, that wasn't too hard. 2 a

57 M: Let's see if it can score a perfect game. 
M: it's saying the score is 330. 
K: Because the current frame is getting incremented all the way to 12. 
M: We need to limit it to 10.

3 a

58 M: now it's saying that the score is 270. What's going on? 
K: the score function is subtracting one from getCurrentFrame, so it's 
giving you the score for frame 9, not 10. 
M: You mean I should limit the current frame to 11 not 10?

4 a

59 M: OK, so now it gets the score correct, but fails because the current frame 
is 11 and not 10.

2 a

60 M: We want the current frame to be the frame the player is throwing into, 
but what does that mean at the end of the game? 
K: Maybe we should go back to the idea that the current frame is the frame 
of the last ball thrown
M: Or maybe we need to come up with the concept of the last completed
frame? After all, the score of the game at any point in time is the score in the 
last completed frame.
K: A completed frame is a frame that you can write the score into. Yes, a 
frame with a spare in it completes after the next ball. 
M: A frame with a strike in it completes after the next two balls. A frame 
with no mark completes after the second ball in the frame.

3 a

61 M: We are trying to get the score method to work, right? All we need to do 
is force score to call scoreForFrame(10) if the game is complete.  
K: How do we know if the game is complete?" 

3 a
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M: If adjustCurrentFrame ever tries to increment itsCurrentFrame past 
the 10th frame, then the game is complete.

62 K: All you are saying is that if getCurrentFrame returns 11, the game is 
complete; that's the way the code works now. M: You mean we should 
change the test case to match the code. 
M: that works.

2 a

63 M: I suppose it's no worse than getMonth returning zero for January, but I 
still feel uneasy about it. 
K: That doesn't fail.

3 a

64 K: I thought since the 21st position of the array was a strike, the scorer 
would try to add the 22nd and 23rd positions to the score. But I guess not.

2 a

65 M: you are still thinking about that scorer object, aren't you? Anyway, I see 
what you were getting at, but since score never calls scoreForFrame with a 
number larger than 10, the last strike is not actually counted as a strike. It's 
just counted at a 10 to complete the last spare. We never walk beyond the 
end of the array.
K: , let's pump our original score card into the program
K: Well, that works. Are there any other test cases that you can think of

4 a

66 M: let's test a few more boundary conditions. How about the poor schmuck 
who throws 11 strikes and then a final 9. 
M: That works.

4 a

67 M: how about a 10th frame spare? 
M: That works too.

4 a

68 K: Besides I really want to refactor this mess. I still see the scorer object in 
there somewhere.
M: I'd really like to extract the body of that else clause into a seperate 
function named handleSecondThrow, but I can't because it uses ball, 
firstThrow, and secondThrow local variables. 
K: We could turn those locals into member variables. 
M: that kind of reinforces your notion that we'll be able to pull the scoring 
out into its own scorer object.

3 r

69 K: I hadn't expected the name collision. We already had an instance variable 
named firstThrow. But it is better named firstThrowInFrame. Anyway, 
this works now. So we can pull the else clause out into its own function

4 r

70 M: Look at the structure of scoreForFrame! In pseudocode, it looks 
something like this.
K: That's pretty much the rules for scoring bowling isn't it? let's see if we 
can get that structure in the real function. First let's change the way the ball
variable is being incremented so that the three cases manipulate it 
independently.

3 r

71 M: now let's get rid of the firstThrow and secondThrow variables and 
replace them with appropriate functions.

2 r

72 M: That step works; let's keep going 2 a

73 M: OK, that works too. Now let's deal with frameScore 2 a

74 K: you aren't incrementing ball in a consistent manner. In the spare and 
strike case, you increment before you calculate the score. In the 
twoBallsInFrame case, you increment after you calculate the score. And 

3 r
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the code depends upon this order! 
M: I'm planning on moving the increments into strike, spare, and 
twoBallsInFrame. That way they'll disappear from the scoreForFrame
function, and the function will look just like our pseudocode

75 M: OK, now since nobody uses firstThrow, secondThrow, and 
frameScore anymore, we can get rid of them.

3 e

76 M: since the only variable that couples the three cases is ball, and since ball
is dealt with independently in each case, we can merge the three cases 
together

3 r

77 M: you would like to move the increments?
M: Look at that scoreForFrame function. That's the rules of bowling stated 
about as succinctly as possible.

2 a

78 K: what happened to the linked list of Frame objects? 2 a

79 K: We made a mistake starting with the Throw class. We should have 
started with the Game class first
M: , next time let's try starting at the highest level and work down
K: Down Design!??!?! Could DeMarco have been right all along.
M: Correction: Top Down Test First Design. Frankly, I don't know if this is 
a good rule or not. It's just what would have helped us in this case. So next 
time, I'm going to try it and see what happens.

4 a

80 K: Anyway we still have some refactoring to do. The ball variable is just a 
private iterator for scoreForFrame and its minions. They should all be 
moved into a different object
M: your Scorer object. You were right after all. Let's do it

3 r

81 K: That's much better. Now Game just keeps track of frames, and Scorer
just calculates the score. The SRP rocks. 
M: Did you notice that the itsScore variable is not being used anymore? 
K: You're right. Let's kill it

4 e

82 K: Now should we clean up the adjustCurrentFrame stuff. 
M: first let's extract the increments into a single function that also restricts 
the frame to 11. 

3 r

83 M: that's a little better. Now let's break out the strike case into its own 
function. 
M: That -1 is odd. It's the only place we truly use getCurrentFrame, and 
yet we need to adjust what it returns.
M: The code wants itsCurrentFrame to represent the frame of the last 
thrown ball, not the frame we are about to throw into. 
M: we should remove getCurrentFrame from all the test cases and remove 
the getCurrentFrame function itself. Nobody really uses it
K: , I get your point. I'll do it. It'll be like putting a lame horse out of its 
misery.
M: You mean to tell me that we were fretting over that. All we did was 
change the limit from 11 to 10 and remove the -1.
K: it really wasn't worth all the angst we gave it

4 r

84 M: looks like we are done. Let's just read through the whole program and 
see if it's as simple and communicative as it can be

2 a
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APPENDIX B 

CASE STUDY ON INCREMENTAL SOFTWARE DEVELOPMENT

In this section, we include those detailed data for each intermediate pair

during incremental software development. Tables B.1-B.8 show the distribution 

of the cognitive activities and Bloom’s levels throughout the recorded episodes 

for pair I to pair VIII. Figures B.1-B.8 are the UML class diagrams for the 

programs developed by pair I to pair VIII. The data are summarized in Chapter 7.

Table B.1: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair I

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 18
27.69%

0
0%

2
3.08%

0
0%

20
30.77%

Application 19
29.23%

0
0%

3
4.62%

1
1.54%

23
35.39%

Analysis 8
12.31%

0
0%

0
0%

2
3.07%

10
15.38%

Synthesis 12
18.46%

0
0%

0
0%

0
0%

12
18.46%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 57
87.69%

0
0%

5
7.70%

3
4.61%

65
100%
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Bowling

iFrameIndex : int
ScoreOfFirstThrow [] : int
ScoreOfSecondThrow [] : int
scoreOfFrame [] : int
BonusOfFirstThrow : int
BonusOfSecondThrow : int
rand : Random

Bowling()
getFirstScore()
getScore()
getFrameIndex()
getBonusScore()
getScore1()
getScore()
getFrameScore()

TestBowling

TestBowling()
testGetScore()
testGetFrameScore()
test2Throw()
test4Throw()
testSimpleStrike()
test2Strike()
testLastSpareGame()
testPerfectGame()
testGame()
testGame1()

Figure B.1: UML class diagram for the pair I’s program 
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 Table B.2: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair II

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 14
31.11%

0
0%

0
0%

0
0%

14
31.11%

Application 17
37.78%

1
2.22%

2
4.45%

0
0%

20
44.45%

Analysis 6
13.33%

0
0%

0
0%

0
0%

6
13.33 %

Synthesis 5
11.11%

0
0%

0
0%

0
0%

5
11.11%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 42
93.33%

1
2.2%

2
4.45%

0
0%

45
100%

TestFrame

testframepoints()

FrameList

first : Frame
second : Frame
total : int

FrameList()
add()
totalScore()

Frame
firstThrow
secondThrow
next Frame

Frame()
Frame()
information()
setNext()
getNext()
getFirstThrow()
getSecondThrow()
score()
bonus()

Figure B.2: UML class diagram for the pair II’s program
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Table B.3: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair III

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 12
19.35%

1
1.61%

0
0%

0
0%

13
20.96%

Application 15
24.20%

0
0%

7
11.29%

0
0%

22
35.49%

Analysis 13
20.97%

0
0%

2
3.23%

0
0%

15
24.20%

Synthesis 12
19.35%

0
0%

0
0%

0
0%

12
19.35%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 52
83.87%

1
1.61%

9
14.52%

0
0%

62
100%

TestFrame

testUpdateFrame()
testPlayer()
test2Throw()
testStrike()
test300()
testSpare()
testCompleteGame()
testBowlingFor Two()
testDoubleStrike()

Frame

Total : int
bonus : int
score : int
numOfBonus : int
numThrows : int
name

Frame()
updateFrame()
updateBonus()

Player

currentFrame : int
standing : int
changeFrame : Boolean
done : Boolean
myFrame [] Frame
total : int
name

Player()
update()
runningTotal()

Figure B.3: UML class diagram for the pair III’s program
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Table B.4: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair IV

Assimilation Accommodation
Absorption Denial Reorganization Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 15
21.54%

0
0%

1
1.45%

0
0%

16
23.19%

Application 26
37.68%

0
0%

1
1.45%

1
1.45%

28
40.58%

Analysis 10
14.49%

0
0%

1
1.45%

0
0%

11
15.94%

Synthesis 14
20.29%

0
0%

0
0%

0
0%

14
20.29%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 65
94.20%

0
0%

3
4.35%

1
1.45%

69
100%
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TestGame

testTotal()

Bowling

frames [] Frame

Bowling()
setBonus()
lastFrame()
getTotal()

Frame

ball1 : int
ball2 : int
bonus : int
strike : boolean
spare : boolean

Frame()
getFrameValue()
getBall1()
getBall2()
setBall1()
setBall2()
setBonus()
getBonus()
setFramePoints()
isStrike()
isSpare()

TestFrameValue

testInput()

Figure B.4: UML class diagram for the pair IV’s program
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Table B.5: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair V

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 16
23.88%

0
0%

0
0%

0
0%

16
23.88%

Application 25
37.31%

0
0%

0
3.00%

1
1.49%

26
38.81%

Analysis 12
17.91%

0
0%

2
3%

0
0%

14
20.90%

Synthesis 11
16.41%

0
0%

0
0%

0
0%

11
16.41%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 64
95.51%

0
0%

2
3.00%

1
1.49%

67
100%
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Frame

sum : int
x : int
y : int
z : int
frame1 : int
frame2 : int
frame3 : int
frame4 : int
first_number : String
second_number : String
pins [] int
throwCount : int
nextFrame : Frame

getScore()
getScore()
isStrike()
isSpare()
throwNeededForScore()
addPins()
giveThrowToNextFrame()
isFull()
totalPins()
isScoreAvailable()
test1()

TestBowling

testoneThrow()
testMine()
testPerfectGame()

Figure B.5: UML class diagram for the pair V’s program
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Table B.6: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair VI

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 11
16.66%

0
0%

1
1.52%

1
1.52%

13
19.70%

Application 23
34.85%

0
0%

1
1.52%

1
1.52%

25
37.88%

Analysis 13
19.70%

0
0%

1
1.52%

0
0%

14
21.21%

Synthesis 14
21.21%

0
0%

0
0%

0
0%

14
21.21%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 61
92.42%

0
0%

3
4.55%

2
3.03%

66
100%



www.manaraa.com

147

TestBoardController

testTurn()
testDoGame()
testCalculateScoreGame()
testRandomCalculateScore()

Frame

mFirstThrow
mSecondThrow

Player

mPlayerName : String
mScore : int

Player()
pThrow()
setName()
getName()

BoardController

mPlayer : Player
mVector : Vector

makeVector()
doCalculateScore()
doGame()

TestFrame

TestFrame()
testThrow()
testGetSetName()
testBCDoTurn()
testBCGame()
testCalculateScore()
testRandomCalculateScores()

TestPlayer

testThrow()
setGetPlayerName()

Figure B.6: UML class diagram for the pair VI’s program
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Table B.7: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair VII

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 19
29.69%

0
0%

0
0%

0
0%

19
29.69%

Application 24
37.5%

0
0%

0
0%

1
1.56%

25
39.06%

Analysis 7
10.94%

0
0%

0
0%

0
0%

7
10.94 %

Synthesis 13
20.31 %

0
0%

0
0%

0
0%

13
20.31%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 63
98.44%

0
0%

0
0%

1
1.56%

64
100%
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TestFrame

testSetFirstRoll()
testSetSecondRoll()
testIsStrike()
testIsSpare()
testGetTotal()
testReset()

BowlingFrame

firstRoll : int
secondRoll : int

BowlingFrame()
reset()
setFirstRoll()
getFirstRoll()
setSecondRoll()
getSecondRoll()
isStrike)()
isSpare()
getTotal()

BowlingScore

BowlingScore()
reset()
getScoreAtFrame()

BowlingScore

frame [] BowlingFrame

BowlingScore()
reset()
getScoreAtFrame()

Figure B.7: UML class diagram for the pair VII’s program
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Table B.8: The distribution of the cognitive activities and 
Bloom’s levels throughout the recorded episodes for pair VIII

Assimilation Accommodation
Absorption Denial Reorganizati

on
Expulsion

Total

Recognition 0
0%

0
0%

0
0%

0
0%

0
0%

Comprehension 15
25.00%

0
0%

0
0%

0
0%

15
25.00%

Application 22
36.67%

0
0%

2
3.33%

1
1.67%

25
41.67%

Analysis 8
13.33%

0
0%

0
0%

0
0%

8
13.33%

Synthesis 12
20.00%

0
0%

0
0%

0
0%

12
20.00%

Evaluation 0
0%

0
0%

0
0%

0
0%

0
0%

Total 57
95.00 %

0
0%

2
3.33%

1
1.67%

60
100%
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testFrame

testSumGreaterThan10()
testSumLessThanZero()
testSumAcceptableInput()

Frame

score1 : int
score2 : int
totalValue : int

Frame()
sum()
incrementalTotalValue()
getTotalValue)()
setScore1()
getScore1()
setScore2()
getScore2()

Game

Game()
getScore()
populateFrame()
getFrameAt()

Game

frames [] Frame
score : int
STRIKE : int
SPARE : int
NORMAL_FRAME_MAX : int
FRAME_MAX : int

Game()
getScore()
populateFrame()
getFrameAt()

Figure B.8: UML class diagram for the pair VIII’s program
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APPENDIX C 

CASE STUDY ON PROGRAM DEBUGGING

The case study description and the distribution of the cognitive 

activities and Bloom levels are in Chapter 6. The Table C.1 contains the 

classification of cognitive activities and Bloom’s levels for all the 28 

episodes.

Table C.1: Classification of the cognitive activities and Bloom’s levels in the case 
study on program debugging

(A: absorption; d: denial; r: reorganization; e: expulsion; 1-6 refers to the 
six Bloom’s levels starting from knowledge)

Epis
ode

Programmer’s action Bloom
level

Cognitiv
e activity

1 The programmer was provided with the symptoms “system not 
responding or too slow”.

2 a

2 Based on his experience with the architecture of similar systems, the 
programmer considered several possible causes.

4 a

3 He decided that the most likely cause is the slow database query that 
slows down access to the web server. The slow web server then 
blocks access to the site. 

5 r

4 Based on this assumption, the programmer used a “browser 
skeleton” to validate this hypothesis.

4 a

5 The browser skeleton is a test harness, in which a program simulates 
customers connecting to the web server.

3 a

6 The average response time was recorded after a browser skeleton 
was launched.

2 a

7 Then the actual web browser was launched to connect to the server 
and the response time of the server was also recorded. 

2 a

8 The result turned out to be 100 times longer than the response time 
for the browser skeleton after contrasting the two response times. 
This test was repeated several times to make sure that the results 
were stable and repeatable.

4 a

9 The test results supported the hypothesis that queries to the database 
slow down access to the web server.

5 a

10 The programmer has narrowed down the cause of the problem, but 
further work is needed. 

6 a
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11 The next hypothesis was that the web server could not spawn child 
processes to handle customer requests. 

5 r

12 Based on this assumption, another test was conducted using the 
same test harness to observe the state of all processes.

2 a

13 If the hypothesis were true, the number of processes should not 
increase after a certain period of time. 

3 r

14 However, the result did show that some new processes were 
spawned, and the overall number of processes increased.

6 a

15 Therefore, the second hypothesis was not supported by the 
evidence.

1 e

16 Nonetheless, a useful observation was obtained: One of the child 
processes was accumulating CPU time and others were not.

2 a

17 Based on this observation, the second hypothesis was modified as 
“not all child processes were handling inbound requests”

5 r

18 A further investigation was conducted to see what each child was 
doing during the browser request process.

3 a

19 It was found that only one child works properly and other children 
tried to set a lock on a file that was already locked by another 
process.

4 a

20 Therefore, there was a block or race condition that put other child 
processes into an infinite loop and blocked their execution. 

6 r

21 After reading the Unix manual and going through documentation 
and configuration settings, the programmer noticed that the web 
server uses system calls getcontext and setcontext, which are used in 
user-level threaded applications.

2 a

22 The programmer knew that the web server was actually a multi-
threaded application with user-level threads and found that the child 
process was not threading as expected.

3 a

23 Therefore a further hypothesis was made that the actual COTS 
server agent was not multi-threaded and, forced the web server to 
become blocked. 

5 r

24 The server agent provides communication between the web server 
and the relational database management system. The present server 
agent provided by the database vendor is used with the www server-
side API although it also supports the Common Gateway Interface 
(CGI).

2 a

25 If the above hypothesis is true, then using the CGI version of the 
same agent instead of www server-side API version of the server 
agent would be the right solution, as CGI supports multiple 
threading.

6 r

26 A new test was proposed after the www server-side API version of 
the server agent was replaced with CGI version.

3 a

27 The test harness and actual web browser were used again. 1 a

28 The result demonstrated that the web server was no longer blocked 
after the replacement.

2 r
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Software engineering activities are to process a large amount of 

knowledge and therefore, the cognitive process is mainly involved. Studying the 

cognitive process involved in software engineering can greatly help us to 

understand the whole process and to improve software engineering research. 

In order to study the cognitive process, we developed an empirical 

method that includes dialog-based protocol and self-directed learning theory. 

The dialog-based protocol is based on the analysis of the dialog that occurs 

between programmers in pair programming. It is an alternative to the common 

think-aloud protocol and it may minimize the Hawthorne and placebo effects. 

The self-directed learning theory is based on the constructivist learning theory 

and the Bloom taxonomy. It captures the specifics of the programmer’s cognitive 

activities and provides an encoding scheme used in analyzing the empirical data.  

We conducted a case study of expert and intermediate programmers 

during incremental software development. Compared to intermediate 
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programmers, experts discussed more domain concepts at a greater length 

before starting to write code. Experts mostly concentrated on one concept at one 

time, while intermediate programmers often discussed several concepts 

simultaneously.  Experts were willing to reconsider and correct obsolete design 

decisions, while intermediate programmers retained all design decisions.  

Experts had more absorption activities at higher Bloom levels such as analysis 

and synthesis, while intermediate programmers had more absorption activities at 

lower Bloom levels such as comprehension and application. Experts spent more 

time analyzing the knowledge and generating test cases, while intermediate 

programmers spent more time learning the knowledge.

We also conducted a case study on program debugging, and found that 

programmers apply the cognitive activities at all six Bloom levels and move from 

lower one to upper one in order to make update. Program debugging is a more 

complex activity than incremental software development.

A case study on pair programming in software evolution class projects 

was also performed. The results of the case study showed that paired students 

completed their change request tasks faster and with higher quality than 

individuals.  They also wrote less lines of code and used more meaningful 

variable names.  
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